• 제목/요약/키워드: Muscle, smooth, vascular

검색결과 426건 처리시간 0.025초

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

경구개 연성종물로 발현된 혈관평활근종 1예 (A Case of Vascular Leiomyoma Presenting as a Soft Mass of the Hard Palate)

  • 윤태미;정기홍;양형채;이준규
    • 대한두경부종양학회지
    • /
    • 제26권2호
    • /
    • pp.250-252
    • /
    • 2010
  • Vascular leiomyomas are benign tumors of smooth muscle origin arising from the muscularis layer of blood vessel walls. They can occur anywhere in the body where smooth muscle is found and usually occur in the lower extremity as a slow-growing, firm, occasionally painful mass. However they are rare in the head and neck and very rare in hard palate. Here we report a case of a vascular leiomyoma presenting as a soft mass of the hard palate and review the literatures.

Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

  • Hwang, Jung Seok;Han, Sung Gu;Lee, Chi-Ho;Seo, Han Geuk
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.917-925
    • /
    • 2017
  • Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang II-induced vascular aging as a dietary supplement.

Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11

  • Seong, Minhyeong;Kang, Hara
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.206-211
    • /
    • 2020
  • Vascular smooth muscle cells (VSMCs) are a unique cell type that has unusual plasticity controlled by environmental stimuli. As an abnormal increase of VSMC proliferation is associated with various vascular diseases, tight regulation of VSMC phenotypes is essential for maintaining vascular homeostasis. Hypoxia is one environmental stress that stimulates VSMC proliferation. Emerging evidence has indicated that microRNAs (miRNAs) are critical regulators in the hypoxic responses of VSMCs. Therefore, we previously investigated miRNAs modulated by hypoxia in VSMCs and found that miR-1260b is one of the most upregulated miRNAs under hypoxia. However, the mechanism that underlies the regulation of VSMCs via miR-1260b in response to hypoxia has not been explored. Here we demonstrated that hypoxia-induced miR-1260b promotes VSMC proliferation. We also identified growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily, as a novel target of miR-1260b. miR-1260b directly targets the 3'UTR of GDF11. Downregulation of GDF11 inhibited Smad signaling and consequently enhanced the proliferation of VSMCs. Our findings suggest that miR-1260b-mediated GDF11-Smad-dependent signaling is an essential regulatory mechanism in the proliferation of VSMCs, and this axis is modulated by hypoxia to promote abnormal VSMC proliferation. Therefore, our study unveils a novel function of miR-1260b in the pathological proliferation of VSMCs under hypoxia.

Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells

  • Park, Hyun-Soo;Han, Joo-Hui;Jung, Sang-Hyuk;Lee, Do-Hyung;Heo, Kyung-Sun;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.349-360
    • /
    • 2018
  • Autophagy has been studied as a therapeutic strategy for cardiovascular diseases. However, insufficient studies have been reported concerning the influence of vascular smooth muscle cells (VSMCs) through autophagy regulation. The aim of the present study was to determine the effects of VSMCs on the regulation of autophagy under in vitro conditions similar to vascular status of the equipped micro-tubule target agent-eluting stent and increased release of platelet-derived growth factor-BB (PDGF-BB). Cell viability and proliferation were measured using MTT and cell counting assays. Immunofluorescence using an $anti-{\alpha}-tubulin$ antibody was performed to determine microtubule dynamic formation. Cell apoptosis was measured by cleavage of caspase-3 using western blot analysis, and by nuclear fragmentation using a fluorescence assay. Autophagy activity was assessed by microtubule-associated protein light chain 3-II (LC-II) using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured using $H_2DCFDA$. The proliferation and viability of VSMCs were inhibited by microtubule regulation. Additionally, microtubule-regulated and PDGF-BB-stimulated VSMCs increased the cleavage of caspase-3 more than only the microtubule-regulated condition, similar to that of LC3-II, implying autophagy. Inhibitory autophagy of microtubule-regulated and PDGF-BB-stimulated VSMCs resulted in low viability. However, enhancement of autophagy maintained survival through the reduction of ROS. These results suggest that the apoptosis of conditioned VSMCs is decreased by the blocking generation of ROS via the promotion of autophagy, and proliferation is also inhibited. Thus, promoting autophagy as a therapeutic target for vascular restenosis and atherosclerosis may be a good strategy.

Nucleotide-binding oligomerization domain protein 2 attenuates ER stress-induced cell death in vascular smooth muscle cells

  • Kwon, Min-Young;Hwang, Narae;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.665-670
    • /
    • 2019
  • Nucleotide-binding oligomerization domain protein 2 (NOD2), an intracellular pattern recognition receptor, plays important roles in inflammation and cell death. Previously, we have shown that NOD2 is expressed in vascular smooth muscle cells (VSMCs) and that NOD2 deficiency promotes VSMC proliferation, migration, and neointimal formation after vascular injury. However, its role in endoplasmic reticulum (ER) stress-induced cell death in VSMCs remains unclear. Thus, the objective of this study was to evaluate ER stress-induced viability of mouse primary VSMCs. NOD2 deficiency increased ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) in VSMCs in the presence of tunicamycin (TM), an ER stress inducer. In contrast, ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) were decreased in NOD2-overexpressed VSMCs. We found that the $IRE-1{\alpha}-XBP1$ pathway, one of unfolded protein response branches, was decreased in NOD2-deficient VSMCs and reversed in NOD2-overexpressed VSMCs in the presence of TM. Furthermore, NOD2 deficiency reduced the expression of XBP1 target genes such as GRP78, PDI-1, and Herpud1, thus improving cell survival. Taken together, these data suggest that the induction of ER stress through NOD2 expression can protect against TM-induced cell death in VSMCs. These results may contribute to a new paradigm in vascular homeostasis.

Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating SIRT1

  • Kang, Eun Sil;Kim, Hyo Juong;Han, Sung Gu;Seo, Han Geuk
    • 한국축산식품학회지
    • /
    • 제40권1호
    • /
    • pp.106-117
    • /
    • 2020
  • Cellular senescence is associated with age-related vascular disorders and has been implicated in vascular dysfunctions. Here, we show that duck oil-loaded nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control nanoemulsion (NE), DO-NE significantly inhibited the activity of senescence-associated β-galactosidase, which is a biomarker of cellular senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also dose-dependently rescued Ang II-induced repression of SIRT1 expression, indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor sirtinol elicited the opposite effect. These findings indicate that DO-NE inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging triggered by Ang II.

쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향 (Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches)

  • 최수승
    • Journal of Chest Surgery
    • /
    • 제43권4호
    • /
    • pp.345-355
    • /
    • 2010
  • 산성화를 초래하는 Hypoxia 등 여러 가지 조건에서 변화하는 세포외 pH 변화는 궁극적으로 세포내 pH 변화를 유발하며 세포 내외 pH 변화는 혈관평활근 수축성 변화를 유발한다. 이러한 세포 내외 pH 변화에 의한 혈관 수축성 변화 기전을 규명하고자, pH 변화가 혈관수축인자들에 의한 혈관평활근 수축, 혈관평활근세포내 $Ca^{2+}$ 농도, 그리고 혈관평활근의 $Ca^{2+}$에 대한 민감도에 미치는 영향을 알아보고자 하였다. 대상 및 방법: 쥐에서 분리한 상장간막동맥과 그 분지에서 등장성 수축을 기록하였으며 배양한 상장간막동맥 세포에서 세포내 $Ca^{2+}$ 변화를 측정하였다. 세포외 pH는 정상인 7.4에서 6.4, 6.9 혹은 7.8로 변화시켰으며, 세포내 pH 변화는 propionic acid나 $NH_4$를 투여하거나 ${\beta}$-escin으로 세포막의 투과성을 증가시켜 세포외 용액의 pH 변화로 유발시켰다. 결과: 세포외 pH를 7.4에서 6.9, 6.4로 감소시키면 노에피네프린과 세로토닌에 의한 용량-반응 곡선이 우측 이동하였으며 최대 수축력의 50% 수축력을 유발하는 농도(half maximal effective concentration)가 증가하였고, pH를 7.8로 증가시키면 그 반대 현상이 일어났다. 노에피네프린은 배양한 혈관평활근세포에서 세포내 $Ca^{2+}$ 농도를 증가시켰으며, 이 세포내 $Ca^{2+}$ 증가는 세포외 pH 감소에 의하여 억제되었으며 세포외 pH 증가에 의하여 증가하였다. 노에피네프린에 의한 수축은 세포내 pH를 감소시키는 $NH_4$에 의하여 억제된 반면, 안정 장력은 $NH_4$과 propionic acid에 의하여 증가하였다. ${\beta}$-escin으로 세포막의 투과도를 증가시킨 후 세포외 용액의 $Ca^{2+}$ 농도를 증가시켜 수축을 유발시킨 후 세포외 용액의 pH를 변화시키면 pH 감소에 의하여 수축력이 감소하였으며 증가에 의하여 수축력이 증가하였다. 결론: 세포외 pH의 감소는 혈관평활근의 수축성을 감소시키는데 이는 세포외 pH 감소에 의한 혈관평활근의 혈관수축물질에 대한 반응성 감소, 혈관평활근 세포내 $Ca^{2+}$ 유입 억제 그리고 $Ca^{2+}$에 대한 혈관평활근의 민감성 감소에 의하여 일어난 것으로 추정할 수 있었다.