• Title/Summary/Keyword: Murine fibroblasts

Search Result 26, Processing Time 0.021 seconds

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

Evaluation of 20(S)-ginsenoside Rg3 loaded hydrogel for the treatment of perianal ulcer in a rat model

  • Jin, Longhai;Liu, Jinping;Wang, Shu;Zhao, Linxian;Li, Jiannan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.771-779
    • /
    • 2022
  • Background: As a kind of common complication of the surgery of perianal diseases, perianal ulcer is known as a nuisance. This study aims to develop a kind of 20(S)-ginsenoside Rg3 (Rg3)-loaded hydrogel to treat perianal ulcers in a rat model. Methods: The copolymers PLGA1600-PEG1000-PLGA1600 were synthesized by ring-opening polymerization process and Rg3-loaded hydrogel was then developed. The perianal ulcer rat model was established to analyze the treatment efficacy of Rg3-loaded hydrogel for ulceration healing for 15 days. The animals were divided into control group, hydrogel group, free Rg3 group, Rg3-loaded hydrogel group, and Lidocaine Gel® group. The residual wound area rate was calculated and the blood concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) were recorded. Hematoxylin and eosin (H&E) staining, Masson's Trichrome (MT) staining, and tumor necrosis factor α (TNF-α), Ki-67, CD31, ERK1/2, and NF-κB immunohistochemical staining were performed. Results: The biodegradable and biocompatible hydrogel carries a homogenous interactive porous structure with 10 ㎛ pore size and five weeks in vivo degradation time. The loaded Rg3 can be released sustainably. The in vitro cytotoxicity study showed that the hydrogel had no effect on survival rate of murine skin fibroblasts L929. The Rg3-loaded hydrogel can facilitate perianal ulcer healing by inhibiting local and systematic inflammatory responses, swelling the proliferation of nuclear cells, collagen deposition, and vascularization, and activating ERK signal pathway. Conclusion: The Rg3-loaded hydrogel shows the best treatment efficacy of perianal ulcer and may be a candidate for perianal ulcer treatment.

Fructose-1,6-diphosphate : The new anti-aging material.

  • Ahn, Soo-Mi;Kim, Ji-Hyun;Lee, Jong-Chan;Lee, Byeong-Gon;Lee, Soo-Hwan;Jung, Jin-Ho;Chang, Ih-Seoup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.13-34
    • /
    • 2003
  • Fructose-1, 6-diphosphate (FOP), a glycolytic metabolite is reported to ameliorate inflammation and inhibit the nitric oxide production in murine macrophages stimulated with endotoxin. It is also reported that FOP has cytoprotective effects against hypoxia or ischemia/reperfusion injury in brain and heart. In this study, we examined whether FDP has protective effects on UV-induced oxidative damage in skin cell culture system and human skin in vivo. FDP had a protective role in UVB-induced LDH release and ROS accumulation in HaCaT although it did not show direct radical scavenging effect in the experiment using 1, 1-diphenyl-2-picrylhydrazyl (DPPH). FDP also preserved cellular GSH content after UV irradiation in HaCaT and normal human fibroblast culture system. Cellular oxidative stress induces multiple downstream signaling pathways that regulate expression of multiple gene including MMP-1 and collagen, we examined the effects of FDP on UV-induced alteration of these protein expression in fibroblast culture and human skin in vivo. The increased MMP-1 expression in fibroblast and human skin by UV irradiation was significantly decreased by FDP. FDP also prevented the UV-induced decrease of collagen expression in fibroblast and human skin. Moreover, the decreasing the intracellular levels of reducing equivalents in human fibroblast by glutathione (GSH) depletion lowered the UVA dose threshold for reduction of procollagen expression, indicating that the differences of glutathione contents define the susceptibility of fibroblasts towards UV-induced reduction of procollagen expression. FDP also preserved cellular GSH content after UV irradiation, indicating that FDP has protective effects on UV-induced reduction of procollagen expression, which are possibly through maintaining intracellular reducing equivalent. Based on these premises, we examined the effect of daily use of a moisturizer containing FDP on facial wrinkle in comparison with vehicle moisturizer lacking FDP. In the clinical study, FDP significantly decreased facial wrinkle compared with vehicle alone after 6 months of use. Our results suggest that FDP has anti-aging effects in skin by increasing cellular antioxidant system and preventing oxidative signal and inflammatory reaction. Therefore FDP may be useful anti-aging agent for cosmetic purpose.

  • PDF

The Effect of Linarin on LPS-Induced Cytokine Production and Nitric Oxide Inhibition in Murine Macrophages Cell Line RAW264.7

  • Kim, Kyung-Jae;Han, Shin-Ha;Sung, Ki-Hyun;Yim, Dong-Sool;Lee, Sook-Kyeon;Lee, Chong-Kil;Ha, Nam-Ju
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2002
  • The herb, Chrysanthemum zawadskii var, latilobum commonly known as Gu-Jul-Cho in Korea, used in traditional medicine to treat pneumonia, bronchitis, cough, common cold, pharyngitis, bladder-related disorders, gastroenteric disorders, and hypertension. Linarin is the main active compound and the biological mechanisms of its activity are unclear. It is believed that effects of this herb may be exerted through the pluripotent effectors of linarin due to its ability to treat a variety of afflictions. In this study, the effects of linarin on the mouse macrophages cell line, RAW 264.7, were investigated. It was found that linarin could activate macrophages by producing cytokines. Monocytes and tissue macrophages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1 ) and the tumor necrosis factor (TNF). Recent studies have shown that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. $TNF-{\alpha}$ production by macrophages treated with linarin occured in a dose dependent manner However, IL-1 production was largely unaffected by this natural product. This study demonstrated the ability of linarin to activate macrophages both directly and indirectly. Linarin also affect both cytosine production and nitric oxide inhibition, in addition to the expression of some surface molecules. Nitric oxide (NO), derived from L-argin-ine, is produced by two forms(constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. Linarin was found to inhibit NO production in the LPS-activated RAW 264.7 cells. Linarin may be a useful candidate as a new drug for treating endotoxemia and the inflammation accompanied by NO overproduction. The linarin-treated total Iymphocytes exhibited cytotoxicity in a dose dependent manner between $20{\;}{\mu}g/ml{\;}and{\;}40{\;}{\mu}g/ml$. These results suggest that linarin may function through macrophage activation.

Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications

  • Wang, Dan-Dan;Kim, Yeon-Ju;Baek, Nam In;Mathiyalagan, Ramya;Wang, Chao;Jin, Yan;Xu, Xing Yue;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.48-57
    • /
    • 2021
  • Background: Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods: We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results: Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion: This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.

Medicinal Herbal Complex Extract with Potential for Hair Growth-Promoting Activity (발모효과를 가지는 한방복합처방단)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Lee, Myoung-Hee;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.277-287
    • /
    • 2012
  • To develop new therapeutic materials to prevent hair loss and enhance hair growth, we developed a medicinal herbal complex extract (MHCE) using 23 herbs traditionally used in oriental medicine. Medicinal Herbal complex extract was consist of Angelica gigas Nakai, Psoralea corylifolia Linne, Biota orientalis Endlicher, and Eclipta prostrata Linne, Rehmannia glutinosa Liboschitz var. purpurea Makino, Ligustrum lucidum Aiton, Polygonum multiflorum Thunberg, and Sesamum indicum Linne, Sophora angustifolia Sieboldet Zuccarini, Angelica dahurica Benthamet Hooker, and Leonurus sibiricus Linne, Salvia miltiorrhiza Bunge, Prunus persica Batsch, Commiphora molmol Engler, Chrysanthemum indicum Linne, Boswellia carterii Birdwood, Panax ginseng C. A. Meyer, Cnidium officinale Makino, Albizia julibrissin Durazzini, and Corydalis ternata Nakai that have traditionally been used for treating hair loss, preventing gray hair, anti-inflammation, and blood circulation in oriental medicine. In addition, we examined the hair growth effect of MHCE in vitro and in vivo. In vitro, we evaluated the effects of MHCE on cultured HFDPC, HaCaT cells, and murine embryonal fibroblasts (NIH3T3 cells). Also, we evaluated the ability of MHCE to prevent gray hair on murine melanoma cells (B16F1 cells). The hair growth-promoting effect of MHCE in vitro was also observed in vivo using C57BL/6 mice. Our results showed that MHCE significantly increased the proliferation of HFDPC (175 % proliferation at $50{\mu}g/mL$), HaCaT cells (133 % proliferation at $20{\mu}g/mL$), and NIH3T3 cells (120 % proliferation at $50{\mu}g/mL$). MHCE also showed consistent melanogenesis in B16F1 cells (154 % melanin synthesis at $50{\mu}g/mL$). Moreover, MHCE showed potential for hair growth stimulation in C57BL/6 mice experiments (98 % hair growth area on 4 weeks). These results indicate that MHCE may be a good candidate for promotion of hair growth.