• Title/Summary/Keyword: Muntz metal

Search Result 2, Processing Time 0.016 seconds

A Study on the Sterilization of Sea Water using Redox Reaction (Redox 반응을 이용한 해수 살균에 대한 연구)

  • Song, Ju-Yeong;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The sterilization of strain and algae in sea water was studied to see the possibility to apply the redox reaction of metal alloy to meet the international marine organization(IMO) regulation, which was to regulate deballasting concentration of strain and algae above 99% of sterilization. Two different kinds of brass were heat treated at different temperature and cooled rapidly to conserve the specific character of ${\beta}$ brass. Untreated Muntz metal showed the best result of antimicrobial rate in sea water, and 7:3 brass showed similar result to Muntz metal. Heavy metal elution rate was inversely proportional to the sterilization capability.

A Study on the Removal of Phosphorus from Wastewater by Redox Reaction of Cu-Zn metal alloy (Cu-Zn 금속합금의 산화 환원 반응을 이용한 수중 탈인처리에 관한 연구)

  • Kim, Tae-Kyeong;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The purpose of this study is to evaluate the removal efficiency of phosphorus from synthetic waste water by reduction and oxidation reaction of Cu-Zn metal alloy. Cu-Zn metal alloy applied in this study is composed of 40% of Zn and 60% of Cu, which is so called Muntz metal. And the fibrous type of metal alloy has approximately $200{\mu}m$ of thickness. Metal is oxidized in an aqueous solution to generate electron and metal ion. The mechanism of phosphate treatment is co-precipitation of metal ion and phosphorous ion at various pH and temperature. The treatment efficiency showed the maximum at a one cycle treatment. This result means that the surface area of reaction material is sufficient enough to get reaction equilibrium. Experiment is conducted at various pH from 5 to 9, and showed the maximum efficiency at pH 8. Phosphorous is dominated as a type of $H_2PO_4{^-}$ and $HPO_4{^{2-}}$ at this pH condition. We could not consider the temperature effect independently, because phosphorous removal efficiency showed such a complex mechanism. We could get high efficiency at lower temperature in this research.