• Title/Summary/Keyword: Municipal Solid Waste (MSW)

Search Result 94, Processing Time 0.03 seconds

Release of Airborne Mercury from Major Waste Incineration Systems in Korea (국내 주요 쓰레기 소각시설로부터 발생하는 수은의 대기 배출량에 관한 연구)

  • 김기현;송동웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.593-596
    • /
    • 1996
  • The encironmental consequences of airborne mercury (Hg) release from waste incineration system are wellperceived. To provide some insights into those phenomena, we have assessed annual emission rates of Hg for several major incineration systems in Korea following the procedures developed abroad. The results of our computation, derived on the basis of dividing the whole amounts of annually incinerated wastes into municipal solid Wastes (MSW), and medical solid wastes (MDW), indicate that the extent of Hg release may be significant nationwide, possibly approaching a few tonnes of Hg per year basis. Knowing that the airborne transport and the resulting deposition of Hg can exert serious pollutions to the aquatic ecosystems, of particular fisheries, we are obliged to establish a stringent measure to confine the amount of Hg released via incineration.

  • PDF

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

Effect of Synthetic MSW Leachate on Chemical Compatibility of PVC Geomembrane (PVC 지오멤브레인의 화학적 적합성에 합성 MSW 침출수가 미치는 영향분석)

  • Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The resistance of flexible PVC geomembranes to leachate chemicals is an important factor when PVC geomembranes are being considered as a barrier layer in a composite liner system. This paper describes laboratory test results that evaluate the chemical compatibility of a 0.76 mm (30 mil) thick flexible PVC geomembrane exposed to a synthetic municipal solid waste (MSW) leachate. Changes in dimensional, physical, and mechanical properties were measured after exposure to the synthetic MSW leachate at $23^{\circ}C$ and $50^{\circ}C$ for 30, 60, 90, and 120 days. Although some variability of the test results is observed due to experimental factors and product variability, the synthetic MSW leachate did not significantly degrade the physical or mechanical properties of the flexible PVC geomembrane. As a result, this paper will conclude the PVC geomembranes are not adversely affected by the synthetic MSW leachate.

  • PDF

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

Sustainability in PET Packaging

  • Shin, Yang-Jai;Kang, Dong-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.105-111
    • /
    • 2009
  • In this work, source reduction of poly ethylene terephthalate (PET) packaging are discussed as aspect of sustainability, such as reuse, refill and recycling through the various treatment methods and historical studies for municipal solid waste (MSW) disposal. Since PET has good chemical, physical and mechanical properties, and provides good oxygen and carbon dioxide barrier properties, PET is one of the most widely used thermoplastic polyester in the U.S. and around the world. As the demand for non-renewable PET is increasing, several approaches have been developed to meet economical feasibility and environmental responsibility without degrading material performance. Several companies, such as Coca-Cola Co., Easterform Packaging Co. and Kraft, have tried to develop lightweight PET bottle, and some of lightweight PET bottles are already commercialized. Reuse and refilling for PET container is well developed in Europe, such as Denmark, German and Netherland by supportive legislation and policies. Recycling process is the best way to economically reduce PET waste. In consequence, advanced technique and further development must be provided due to increasing PET packaging waste.

  • PDF

Pyrolysis And Melting System

  • Uno, Susumu
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.84-90
    • /
    • 2002
  • In 1995 we licensed pyrolysis gas melting technology of indirect heating type (using kiln) from Siemens AG, and built its demonstration facility in 1998 at Clean-Park-East of Fukuoka City to demonstrate the technology for municipal solid waste (MSW). In 1997 we were awarded an order from Kanemura Co., Ltd. to build a pyrolysis gas melting and power generation plant, specifically for treating residue from car shredder. The latter was launched in 1998, and is currently in commercial operation. The operation of these plants have proven the following facts. (1) The system is capable for performing a stable operation with a wide variety of waste. (2) Pyrolysis is achieved steadily regardless of the variation in the quality of waste. (3) The system can be operated under low excess air ratio (1.2∼1.3). (4) The concentration of dioxins at the furnace outlet is 0.062ng-TEQ/㎥$\_$N/, and 0.002ng-TEQ/㎥$\_$N/, at the stack. (the value is corrected to dryO$_2$ 12%) (5) The purity of recovered metals exceeds 90%.

  • PDF

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Investigation of Characteristics of Incinerator Bottom Ash and Assessment for Recycle due to the Change of MSW Composition (생활폐기물 성상변화에 따른 소각시설 바닥재의 특성 변화와 시멘트 클링커 원료로 재활용 가능성 평가)

  • Lee, Woo Chan;Shin, Deuk Chol;Dong, Jong In
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.103-106
    • /
    • 2014
  • Recycling of bottom ash from municipal solid waste (MSW) incinerator has been strictly limited due to its composition of high level chlorine and other unfavorable substances. The composition of MSW has been, however, changed after the introduction of garbage-bag sales system, extended producer responsibility (EPR) policy and the prohibition of direct landfill of food waste. Recent waste shows reduced moisture and chlorine content, increased calorific value due to the separation of food waste, incombustible materials and PVC. The main purpose of this study is to investigate the trend of composition changes of MSW incinerator bottom ash and to compare the analytical results with those before the separation system was introduced. CaO content of bottom ash, one of the major component of cement clinker, increased from 26.7% in 2001 to 34.0% in 2006. The chlorine content showed a dramatic decrease from 1.84% in 2001 to 0.00655% in 2006, which is closely compatible with that of the fly ash of coal-utilizing thermal power plants, which is mainly due to the changes of MSW composition. It is eventually considered that there is a possibility of utilizing the incinerator bottom ash as a raw material of cement clinker feed substances.

Methods of Separating Used Plastics for Recycling (폐플라스틱의 선별기술)

  • 윤여환
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Plastics waste constitutes approximately 23% by volume of the municipal solid waste(MSW) generated in the U.S. each year, and have slow rate of degradation in the environment. Therefore, there is a great deal of public pressure to recycle plastics, and more than 100 million people participate in the curbside recycling programs. Despite the high level of public interest, only 3.5% of the plastic are recycled, which is substantially lower than the recycle rates of other materials such as paper fibers, glass, and iron. Although a large part of the reason is due to the low price of virgin polymers, which in turn is due to the low price of oil, it is possible to make the plastics recycling as a profitable business by developing advanced technologies. In this communication, various methods of separating pplastics from metals and from each other are discussed.

  • PDF