• 제목/요약/키워드: Multivariate control charts

검색결과 57건 처리시간 0.018초

가변추출간격상(假變抽出間格上)에서 분산(分散)-공분산(共分散) 행례(行例)에 대한 다변량(多變量) 기하이동평균(幾何移動平均) 처리원(處理圓) (Multivariate EWMA Control Charts for the Variance-Covariance Matrix with Variable Sampling Intervals)

  • 조교영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제4권
    • /
    • pp.31-44
    • /
    • 1993
  • Multivariate exponentially weighted moving average (EWMA) control charts for monitoring the variance-covariance matrix are investigated. A variable sampling interval (VSI) feature is considered in these charts. Multivariate EWMA control charts for monitoring the variance-covariance matrix are compared on the basis of their average time to signal (ATS) performances. The numerical results show that multivariate VSI EWMA control charts are more efficient than corrsponding multivariate fixed sampling interval (FSI) EWMA control charts.

  • PDF

Multivariate CUSUM control charts for monitoring the covariance matrix

  • Choi, Hwa Young;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.539-548
    • /
    • 2016
  • This paper is a study on the multivariate CUSUM control charts using three different control statistics for monitoring covariance matrix. We get control limits and ARLs of the proposed multivariate CUSUM control charts using three different control statistics by using computer simulations. The performances of these proposed multivariate CUSUM control charts have been investigated by comparing ARLs. The purpose of control charts is to detect assignable causes of variation so that these causes can be found and eliminated from process, variability will be reduced and the process will be improved. We show that the charts based on three different control statistics are very effective in detecting shifts, especially shifts in covariances when the variables are highly correlated. When variables are highly correlated, our overall recommendation is to use the multivariate CUSUM control charts using trace for detecting changes in covariance matrix.

Multivariate Control Charts for Several Related Quality Characteristics

  • Chang, Duk-Joon;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.467-476
    • /
    • 2005
  • Multivariate control charts for monitoring mean vector of several related quality variables with combine-accumulate approach and accumulate-combine apprach were investigated. Shewhart chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and multivariate charts based on accumulate- combine approach is more efficient than corresponding multivariate charts based on combine-accumulate approach.

  • PDF

A Study on the Multivariate Exponentially Weighted Moving Average Control Charts for Monitoring the Variance-Covariance Matrix

  • Cho, Gyo-Young;Sung, Sam-Kyung
    • 품질경영학회지
    • /
    • 제22권1호
    • /
    • pp.54-65
    • /
    • 1994
  • Multivariate exponentially weighted moving average (EWMA) control charts for monitoring the variance-covariance matrix are investigated. Two basic approaches, "combine-accumulate" approach and "accumulate-combine" approach, for using past sample information in the developement of multivariate EWMA control charts are considered. Multivariate EWMA control charts for monitoring the variance-covariance matrix are compared on the basis of their average run length (ARL) performances. The numerical results show that multivariate EWMA control charts based on the accumulate-combine approach are more efficient than corresponding multivariate EWMA control charts based on the combine-accumulate approach.

  • PDF

Multivariate EWMA Charts for Simultaneously Monitoring both Means and Variances

  • Cho, Gyo Young;Chang, Duk Joon
    • Communications for Statistical Applications and Methods
    • /
    • 제4권3호
    • /
    • pp.715-723
    • /
    • 1997
  • Multivariate control statistics to simultaneously monitor both means and variances for several quality variables under multivariate normal process are proposed. Performances of the proposed multivariate charts are evaluated in terms of average run length(ARL). Multivariate Shewhart chart is also proposed to compare the performances of multivariate exponentially weighted moving average(EWMA) charts. A numerical comparison shows that multivariate EWMA charts are more efficient than multivariate Shewhart chart for small and moderate shifts and multivariate EWMA scheme based on accumulate-combine approach is more efficient than corresponding multivariate EWMA chart based on combine-accumulate approach.

  • PDF

Multivariate EWMA control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.807-814
    • /
    • 2012
  • We know that the exponentially weighted moving average (EWMA) control charts are sensitive to detecting relatively small shifts. Multivariate EWMA control charts are considered for monitoring of variance-covariance matrix when the distribution of process variables is multivariate normal. The performances of the proposed EWMA control charts are evaluated in term of average run length (ARL). The performance is investigated in three types of shifts in the variance-covariance matrix, that is, the variances, covariances, and variances and covariances are changed respectively. Numerical results show that all multivariate EWMA control charts considered in this paper are effective in detecting several kinds of shifts in the variance-covariance matrix.

Multivariate Cumulative Sum Control Chart for Dispersion Matrix

  • 장덕준;신재경
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.21-29
    • /
    • 2002
  • Several different control statistics to simultaneously monitor dispersion matrix of several quality variables are presented since different control statistics can be used to describe variability. Multivariare cumulative sum (CUSUM) control charts are proposed and the performances of the proposed CUSUM charts are evaluated in terms of average run length (ARL). Multivariate Shewhart charts are also proposed to compare the properties of the proposed CUSUM charts. The numerical results show that multivariate CUSUM charts are more efficient than multivariate Shewhart charts for small or moderate shifts. And we also found that small reference value of the CUSUM chart is more efficient for small shift.

  • PDF

A statistical quality control for the dispersion matrix

  • Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.1027-1034
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. When the joint distribution of the process variables is multivariate normal, multivariate Shewhart control charts using the function of the maximum likelihood estimator for monitoring the dispersion matrix are considered for the simultaneous monitoring of the dispersion matrix. The performances of the multivariate Shewhart control charts based on the proposed control statistic are evaluated in term of average run length (ARL). The performance is investigated in three cases, where the variances, covariances, and variances and covariances are changed respectively. The numerical results show that the performances of the proposed multivariate Shewhart control charts are not better than the control charts using the trace of the covariance matrix in the Jeong and Cho (2012) in terms of the ARLs.

Comparisons of Multivariate Quality Control Charts by the Use of Various Correlation Structures

  • Choi, Sung-Woon;Lee, Sang-Hoon
    • 한국경영과학회지
    • /
    • 제20권3호
    • /
    • pp.123-146
    • /
    • 1995
  • Several quality control schemes have been extensively compared using multivariate normal data sets simulated with various correlation structures. They include multiple univariate CUSUM charts, multivariate EWMA charts, multivariate CUSUM charts and Shewhart T$^{3}$ chart. This paper considers a new approach of the multivariate EWMA chart, in which the smoothing matrix has full elements instead of only diagonal elements. Performance of the schemes is measured by avaerage run length (ARL), coefficient of variation of run length (CVRL) and rank in order of signaling of off-target shifts in the process mean vector. The schemes are also compared by noncentrality parameter. The multiple univariate CUSUM charts are generally affected by the correlation structure. The multivariate EWMA charts provide better ARL performance. Especially, the new EWMA chart shows remarkable results in small shifts.

  • PDF

Multivariate CUSUM Charts with Correlated Observations

  • 조교영;안영선
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권1호
    • /
    • pp.127-133
    • /
    • 2001
  • In this article we establish multivariate cumulative sum (CUSUM) control charts based on residual vector with correlated observations. We first find the residual vector and its expectation and variance-covariance matrix and then evaluate the average run length (ARL) of the control charts.

  • PDF