• Title/Summary/Keyword: Multivariate Techniques

Search Result 216, Processing Time 0.028 seconds

RF Plasma Processes Monitoring for Fluorocarbon Polluted Plasma Chamber Cleaning by Optical Emission Spectroscopy and Multivariate Analysis (Optical Emission Spectra 신호와 다변량분석기법을 통한 Fluorocarbon에 의해 오염된 반응기의 RF 플라즈마 세정공정 진단)

  • Jang, Hae-Gyu;Lee, Hak-Seung;Chae, Hui-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.242-243
    • /
    • 2015
  • Fault detection using optical emission spectra with modified K-means cluster analysis and principal component anal ysis are demonstrated for inductive coupl ed pl asma cl eaning processes. The optical emission spectra from optical emission spectroscopy (OES) are used for measurement. Furthermore, Principal component analysis and K-means cluster analysis algorithm is modified and applied to real-time detection and sensitivity enhancement for fluorocarbon cleaning processes. The proposed techniques show clear improvement of sensitivity and significant noise reduction when they are compared with single wavelength signals measured by OES. These techniques are expected to be applied to various plasma monitoring applications including fault detections as well as chamber cleaning endpoint detection.

  • PDF

Stacked Bilayer Helices: A New Structural Organization of Amphiphilic Molecules

  • Boettcher, Christoph;Stark, Holger;van Heel, Maarin
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.16-20
    • /
    • 1995
  • The spontaneous self-organization of amphiphilic molecules into complex aggregates was undoubtedly an important factor in the emergence of life on earth. We study the parameters governing the self-organization of a simple amphiphilic model system using electron cryomicroscopy of ice-embedded specimens in combination with extensive data analysis. Different stable helices can be generated reproducibly by changing the parameters controlling the molecular aggregation process. The repeating units of the helical aggregates in the micrographs can be found by multivariate statistical image analysis techniques, and these two-dimensional projection images suffice for calculating the three-dimensional density distribution of the fibers. We present a typical structure consisting of a narrow stack of compartmented bilayers twisted into a left-handed helix. Our new techniques directly elucidate the three-dimensional structure of helical assemblies, and can complement or replace diffraction-based approaches.

  • PDF

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

Prediction of Length of ICU Stay Using Data-mining Techniques: an Example of Old Critically Ill Postoperative Gastric Cancer Patients

  • Zhang, Xiao-Chun;Zhang, Zhi-Dan;Huang, De-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.97-101
    • /
    • 2012
  • Objective: With the background of aging population in China and advances in clinical medicine, the amount of operations on old patients increases correspondingly, which imposes increasing challenges to critical care medicine and geriatrics. The study was designed to describe information on the length of ICU stay from a single institution experience of old critically ill gastric cancer patients after surgery and the framework of incorporating data-mining techniques into the prediction. Methods: A retrospective design was adopted to collect the consecutive data about patients aged 60 or over with a gastric cancer diagnosis after surgery in an adult intensive care unit in a medical university hospital in Shenyang, China, from January 2010 to March 2011. Characteristics of patients and the length their ICU stay were gathered for analysis by univariate and multivariate Cox regression to examine the relationship with potential candidate factors. A regression tree was constructed to predict the length of ICU stay and explore the important indicators. Results: Multivariate Cox analysis found that shock and nutrition support need were statistically significant risk factors for prolonged length of ICU stay. Altogether, eight variables entered the regression model, including age, APACHE II score, SOFA score, shock, respiratory system dysfunction, circulation system dysfunction, diabetes and nutrition support need. The regression tree indicated comorbidity of two or more kinds of shock as the most important factor for prolonged length of ICU stay in the studied sample. Conclusions: Comorbidity of two or more kinds of shock is the most important factor of length of ICU stay in the studied sample. Since there are differences of ICU patient characteristics between wards and hospitals, consideration of the data-mining technique should be given by the intensivists as a length of ICU stay prediction tool.

Application of Multivariate Statistical Techniques to Analyze the Pollution Characteristics of Major Tributaries of the Nakdong River (낙동강 주요 지류의 오염특성 분석을 위한 다변량 통계기법의 적용)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2019
  • In this study, we analyzed the water quality characteristics of major tributaries of Nakdong River through statistical analysis such as correlation analysis, principal component and factor analysis, and cluster analysis. Organic matter and nutrients are highly correlated, and are high in spring and autumn, and seasonal water quality management is required. Principal component and factor analysis showed that 82% of total variance could be explained by 4 principal components such as organic matter, nutrients, nature, and weather. BOD, COD, TOC, and TP items were analyzed as major influencing factors. As a result of the cluster analysis, the four clusters were classified according to seasonal organic matter and nutrient pollution. Kumho River watershed showed high pollution characteristics in all seasons. Therefore, effective management of water quality in tributary streams requires measures in consideration of spatio-temporal characteristics and multivariate statistical techniques may be useful in water quality management and policy formulation.

A study on the Analysis and Forecast of Effect Factors in e-Learning Reuse Intention Using Rule Induction Techniques (규칙유도기법을 이용한 이러닝 시스템의 재이용의도 영향요인 분석 및 예측에 관한 연구)

  • Bae, Jae-Kwon;Kim, Jin-Hwa;Jeong, Hwa-Min
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.2
    • /
    • pp.71-90
    • /
    • 2010
  • Electronic learning(or e-learning) has created hype for companies, universities, and other educational institutions. It has led to the phenomenal growth in the use of web-based learning and experimentation with multimedia, video conferencing, and internet-based technologies. Many researchers are interested in the factors that affect to the performance of e-learning or e-learning services. In this sense, this study is aimed at proposing e-learning system reuse prediction models in which e-learner intention to reuse influence factors(i.e., system accessibility, system stability, information clarity, information validity, self-regulated efficacy, computer self-efficacy, perceived usefulness, perceived ease of use, flow, and parental expectation) affect e-learner intention to reuse positively. A web survey was conducted for the full members of the e-learning education institute A in Seoul, Republic of Korea, an exclusive e-learning company that provides real time video lectures via the desktop conferencing system. The web survey was conducted for 20 days from November 5, 2009, through the e-learning web site of the company A. In this study, three data mining techniques were used : the multivariate discriminant analysis, CART, and C5.0 algorithm. This study was conducted to provide the e-learning service providers, e-learning operators, and contents developers with marketing and management strategies for improving the e-learning service companies, based on the data mining analysis results.

  • PDF

Discovering Relationships between Skin Type and Life Style Using Data Mining Techniques: A Case Study of Korea

  • Kim, Taeheung;Ha, Jihyun;Lee, Jong-Seok;Oh, Younhak;Cho, Yong Ju
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.110-121
    • /
    • 2016
  • With the growing interest in skincare and maintenance, there are increasing numbers of studies on the classification of skin type and the factors influencing each type. This study presents a novel methodology by using data mining, for the determination of the relationships between skin type, lifestyle, and patterns of cosmetic utilization. Eight skin-specific factors, which are moisture, sebum in U-zone (both cheeks), sebum in T-zone (forehead, nose, and chin), pore, melanin, wrinkle, acne, hemoglobin, were measured in 1,246 subjects living in South Korea, in conjunction with a questionnaire survey analyzing their lifestyles and pattern of cosmetic utilization. Using various multivariate statistical methods and data mining techniques, we classified the skin types based on the skin-specific values, determined the relationship between skin type and lifestyle, and accordingly sorted the subjects into clusters. Logistic regression analysis revealed gender-related differences in the skin; therefore, separate analyses were performed for males and females. Using the Gaussian Mixture Modeling (GMM) technique, we classified the subjects based on skin type (two male and four female). Using the ANOVA and decision tree techniques, we attempted to characterize the relationship between each skin type and the lifestyles of the subjects. Menstruation, eating habits, stress, and smoking were identified as the major factors affecting the skin.

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

Relationships Between the Characteristics of Algae Occurrence and Environmental Factors in Lake Juam, Korea (주암호의 조류 발생 특성과 수질요인의 상관성 연구)

  • Seo, Kyungae;Jung, Soojung;Park, Jonghwan;Hwang, Kyoungseop;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.317-328
    • /
    • 2013
  • The purpose of this study was to investigate the change of phytoplankton fluctuation and long term of water quality of Lake Juam and to evaluate the relationship between phytoplankton pattern and environmental factors data. Correlation and factor analyses were employed to identify key environmental factors affecting phytoplankton dynamics. Of 18 parameters, pH, temperature, COD, BOD and T-P were highly correlated with Chl-a. Phytoplankton data showed that cyanobacteria were dominant, and more than 60% of total algae density. Also Lake Juam received a lot of influence of the Asian monsoon climate. This study presents necessity of multivariate statistic techniques for evaluation of Lake Juam complex data set with a view to get better information data and effective management of water source.

A Study on Measuring the Similarity Among Sampling Sites in Lake Yongdam with Water Quality Data Using Multivariate Techniques (다변량기법을 활용한 용담호 수질측정지점 유사성 연구)

  • Lee, Yosang;Kwon, Sehyug
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2009
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.