• Title/Summary/Keyword: Multivariate Techniques

Search Result 216, Processing Time 0.027 seconds

Data-based On-line Diagnosis Using Multivariate Statistical Techniques (다변량 통계기법을 활용한 데이터기반 실시간 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.538-543
    • /
    • 2016
  • For a good product quality and plant safety, it is necessary to implement the on-line monitoring and diagnosis schemes of industrial processes. Combined with monitoring systems, reliable diagnosis schemes seek to find assignable causes of the process variables responsible for faults or special events in processes. This study deals with the real-time diagnosis of complicated industrial processes from the intelligent use of multivariate statistical techniques. The presented diagnosis scheme consists of a classification-based diagnosis using nonlinear representation and filtering of process data. A case study based on the simulation data was conducted, and the diagnosis results were obtained using different diagnosis schemes. In addition, the choice of future estimation methods was evaluated. The results showed that the performance of the presented scheme outperformed the other schemes.

Pattern Recognition for Typification of Whiskies and Brandies in the Volatile Components using Gas Chromatographic Data

  • Myoung, Sungmin;Oh, Chang-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.167-175
    • /
    • 2016
  • The volatile component analysis of 82 commercialized liquors(44 samples of single malt whisky, 20 samples of blended whisky and 18 samples of brandy) was carried out by gas chromatography after liquid-liquid extraction with dichloromethane. Pattern recognition techniques such as principle component analysis(PCA), cluster analysis(CA), linear discriminant analysis(LDA) and partial least square discriminant analysis(PLSDA) were applied for the discrimination of different liquor categories. Classification rules were validated by considering sensitivity and specificity of each class. Both techniques, LDA and PLSDA, gave 100% sensitivity and specificity for all of the categories. These results suggested that the common characteristics and identities as typification of whiskies and brandys was founded by using multivariate data analysis method.

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

Application of Sensor Network Using Multivariate Gaussian Function to Hand Gesture Recognition (Multivariate Gaussian 함수를 이용한 센서 네트워크의 수화 인식에의 적용)

  • Kim Sung-Ho;Han Yun-Jong;Bogdana Diaconescu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.991-995
    • /
    • 2005
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as health, environment and habitat monitoring, military, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modern teaming techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes haying the capability of simple processing and wireless communication. The proposed system is able to perform classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to hand gesture recognition system.

The Comparison of Singular Value Decomposition and Spectral Decomposition

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1135-1143
    • /
    • 2007
  • The singular value decomposition and the spectral decomposition are the useful methods in the area of matrix computation for multivariate techniques such as principal component analysis and multidimensional scaling. These techniques aim to find a simpler geometric structure for the data points. The singular value decomposition and the spectral decomposition are the methods being used in these techniques for this purpose. In this paper, the singular value decomposition and the spectral decomposition are compared.

  • PDF

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

Automatic Electrofacies Classification from Well Logs Using Multivariate Statistical Techniques (다변량 통계 기법을 이용한 물리검층 자료로부터의 암석물리학상 결정)

  • Lim Jong-Se;Kim Jungwhan;Kang Joo-Myung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.170-175
    • /
    • 1998
  • A systematic methodology is developed for the prediction of the lithology using electrofacies classification from wireline log data. Multivariate statistical techniques are adopted to segment well log measurements and group the segments into electrofacies types. To consider corresponding contribution of each log and reduce the computational dimension, multivariate logs are transformed into a single variable through principal components analysis. Resultant principal components logs are segmented using the statistical zonation method to enhance the quality and efficiency of the interpreted results. Hierarchical cluster analysis is then used to group the segments into electrofacies. Optimal number of groups is determined on the basis of the ratio of within-group variance to total variance and core data. This technique is applied to the wells in the Korea Continental Shelf. The results of field application demonstrate that the prediction of lithology based on the electrofacies classification works well with reliability to the core and cutting data. This methodology for electrofacies determination can be used to define reservoir characterization which is helpful to the reservoir management.

  • PDF

Multivariate Decision Tree for High -dimensional Response Vector with Its Application

  • Lee, Seong-Keon
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.539-551
    • /
    • 2004
  • Multiple responses are often observed in many application fields, such as customer's time-of-day pattern for using internet. Some decision trees for multiple responses have been constructed by many researchers. However, if the response is a high-dimensional vector that can be thought of as a discretized function, then fitting a multivariate decision tree may be unsuccessful. Yu and Lambert (1999) suggested spline tree and principal component tree to analyze high dimensional response vector by using dimension reduction techniques. In this paper, we shall propose factor tree which would be more interpretable and competitive. Furthermore, using Korean internet company data, we will analyze time-of-day patterns for internet user.

Evaluation of Multivariate Stream Data Reduction Techniques (다변량 스트림 데이터 축소 기법 평가)

  • Jung, Hung-Jo;Seo, Sung-Bo;Cheol, Kyung-Joo;Park, Jeong-Seok;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.889-900
    • /
    • 2006
  • Even though sensor networks are different in user requests and data characteristics depending on each application area, the existing researches on stream data transmission problem focus on the performance improvement of their methods rather than considering the original characteristic of stream data. In this paper, we introduce a hierarchical or distributed sensor network architecture and data model, and then evaluate the multivariate data reduction methods suitable for user requirements and data features so as to apply reduction methods alternatively. To assess the relative performance of the proposed multivariate data reduction methods, we used the conventional techniques, such as Wavelet, HCL(Hierarchical Clustering), Sampling and SVD (Singular Value Decomposition) as well as the experimental data sets, such as multivariate time series, synthetic data and robot execution failure data. The experimental results shows that SVD and Sampling method are superior to Wavelet and HCL ia respect to the relative error ratio and execution time. Especially, since relative error ratio of each data reduction method is different according to data characteristic, it shows a good performance using the selective data reduction method for the experimental data set. The findings reported in this paper can serve as a useful guideline for sensor network application design and construction including multivariate stream data.

MSET PERFORMANCE OPTIMIZATION THROUGH REGULARIZATION

  • HINES J. WESLEY;USYNIN ALEXANDER
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • The Multivariate State Estimation Technique (MSET) is being used in Nuclear Power Plants for sensor and equipment condition monitoring. This paper presents the use of regularization methods for optimizing MSET's predictive performance. The techniques are applied to a simulated data set and a data set obtained from a nuclear power plant currently implementing empirical, on-line, equipment condition monitoring techniques. The results show that regularization greatly enhances the predictive performance. Additionally, the selection of prototype vectors is investigated and a local modeling method is presented that can be applied when computational speed is desired.