• 제목/요약/키워드: Multisuectral Image

검색결과 1건 처리시간 0.016초

웨이블릿 영역에서 분류 예측과 KLT를 이용한 다분광 화상 데이터 압축 (Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain)

  • 김태수;김승진;이석환;권기구;김영춘;이건일
    • 한국통신학회논문지
    • /
    • 제29권4C호
    • /
    • pp.533-540
    • /
    • 2004
  • 본 논문에서는 웨이블릿(wavelet) 영역에서 분류 예측, KLT (Karhunen-Loeve transform), 및 3-D SPIHT(three-dimensional set partitioning in hierarchical trees) 알고리즘(algorithm)을 이용하여 인공위성 화상 데이터에 존재하는 대역내 중복성 (intraband redundancy)과 대역간 중복성 (interband redundancy)을 효과적으로 제거하는 새로운 압축 방법을 제안하였다. 대역간 중복성을 제거하기 위해 웨이블린 영역에서의 분류 정보를 이용하여 영역별 대역간 예측을 행한다. 영역별 대역간 예측에 의해 복원되는 화상들은 예측 오차로 인해 원 화상 (original image)과 차 화상 (residual image)을 가진다. 이 차 화상들 간에 존재하는 대역간 중복성을 제거하기 위하여 KLT를 행한다. 웨이블릿 변환 (wavelet transform)과 KLT를 행하여 대역내 및 대역간 크기 순서로 재정렬된 변환 계수들을 3-D SPIHT 알고리즘을 이용하여 부호화 한다. 제안한 방법의 성능 평가를 위해서 다분광 화상 데이터에 대하여 압축 실험을 행하여 제안한 방법이 기존의 방법들 보다 동일한 여러 비트율 (bit rate)에서 평균 PSNR (peak signal-to-noise ratio)이 0.12∼3.83㏈ 향상됨을 확인하였다.