• Title/Summary/Keyword: Multistep

Search Result 141, Processing Time 0.029 seconds

Adenovirus-Mediated Gene Delivery of Tissue Inhibitor of Metalloproteinase-1 Inhibits Migration of B16F10 Melanoma Cell in Wound Migration Assay

  • Seungwan Jee;Hoil Kang;Park, Sehgeun;Park, Misun;Miok Eom;Taikyung Ryeom;Kim, Okhee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.177-177
    • /
    • 2003
  • Tumor cell invasion and metastasis are a complex multistep process that involves the degradation of extracellular matrix proteins by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-1 (TIMP-1) acts as a negative regulator of matrix metalloproteinase and thus prevents tumor cell invasion and metastasis by preserving extracellular matrix integrity.(omitted)

  • PDF

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

IMPLICIT-EXPLICIT SECOND DERIVATIVE LMM FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.224-261
    • /
    • 2021
  • The interest in implicit-explicit (IMEX) integration methods has emerged as an alternative for dealing in a computationally cost-effective way with stiff ordinary differential equations arising from practical modeling problems. In this paper, we introduce implicit-explicit second derivative linear multi-step methods (IMEX SDLMM) with error control. The proposed IMEX SDLMM is based on second derivative backward differentiation formulas (SDBDF) and recursive SDBDF. The IMEX second derivative schemes are constructed with order p ranging from p = 1 to 8. The methods are numerically validated on well-known stiff equations.

Dirac Phenomenological Analyses of 1.047-GeV Proton Inelastic Scatterings from 62Ni and 64Ni

  • Shim, Sugie
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1631-1636
    • /
    • 2018
  • Unpolarized 1.047-GeV proton inelastic scatterings from the Ni isotopes $^{62}Ni$ and $^{64}Ni$ are analyzed phenomenologically employing an optical potential model and the first-order collective model in the relativistic Dirac coupled channel formalism. The Dirac equations are reduced to $Schr{\ddot{o}}dinger-like$ second-order differential equations, and the effective central and spin-orbit optical potentials are analyzed by considering the mass-number dependence. The multistep excitation via the $2^+$ state is found to be important for the $4^+$ state excitation in the ground state rotational band for proton inelastic scatterings from the Ni isotopes. The calculated deformation parameters for the $2^+$ and the $4^+$ states of the ground state rotational band and for the first $3^-$ state are found to agree pretty well with those obtained from nonrelativistic calculations.

Preprocessing Miscanthus sacchariflorus with Combination System of Cone Grinder and Air Classifier

  • LEE, Hyoung-Woo;EOM, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2021
  • Considerable differences exist in the characteristics of size reduction and classification because of biomass species. Miscanthus sacchariflorus (M. sacchariflorus) Goedae-Uksae 1 is not used efficiently because of the imperfections of the processing technology for this biomass. Therefore, for the best use of specific biomass, improvement in the feedstock preparation of the biomass for processing, such as pellet manufacturing, is necessary. In this study, a laboratory-scale cone grinder and air classifier were designed and combined to investigate the performance of the combination system for M. sacchariflorus. The average equivalent spherical diameter of particles showed a close relationship with air velocity for air classification. The air velocity range to classify proper particles for pelletization was determined to be 6.0-6.8 m/s. The mass ratios of the collected particles to feed mass for four lengths of chopped M. sacchariflorus were 45.1%:46.1%, 39.1%:46.6%, and 44.1%:52.8% at the first, second, and third steps in simulating the multistep combination system, respectively.

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

A Construction of the Multistep Optimal Three-Dimensional Finite Elements for the Mandible Structure Analysis (하악 구조체 분석을 위한 다단계 최적 3 차원 유한 요소 형성)

  • Lee, Hyeong-U;;Lee, Seong-Hwan;Kim, Chang-Heon;Kim, Tae-Yun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1906-1916
    • /
    • 1996
  • For the medical analysis of the three-dimensional structure such as the mandible, it is necessary to reconstruct the structure into the finite number of analyzable elements. The information of the three-dimensional structure can be obtained from the cross-sections of the magnetic resonance image (MRI). A region corresponding to the structure is extracted from the inner part of the cross- section. By the triangulation of the sampled cross-section image, two-dimensional finite elements are generated. Three-dimensional finite elements are constructed by matching the two dimensional finite elements each other in space. In this paper a construction method of the optimal three-dimensional finite elements has been suggested, which uses the adjacent information abstracted from the triangulated two-dimensional finite elements. The elements are classified into the identical property sets by using the adjacent information of the traingulated two-dimensional elements. After applying the multistep matching algorithm to the classified two-dimensional finite elements, the optimal three-dimensional finite elements can be construccted. By analyzing the constructed finite elements, it is possible to get much more useful medical information about the three-dimensional struture of mandible.

  • PDF

Multistep Identification of γ-Irradiated Boiled-Dried Anchovies by Analysis of Thermoluminescence, Electron Spin Resonance, Hydrocarbon and 2-Alkylcyclobutanone (건멸치의 방사선 조사 확인을 위한 열발광, 전자스핀공명, Hydrocarbon 및 2-Alkylcyclobutanone의 다중분석)

  • 노정은;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • Multistep detection was peformed to identify irradiated dried anchovy. In thermoluminescence (TL) analysis, non-irradiated samples represented a lower peak at about 28$0^{\circ}C$, but irradiated samples showed a higher peak at around 20$0^{\circ}C$. The normalization with a re-irradiation step at 1 kGy could verify the identification results. Electron spin resonance (ESR) spectroscopy for bones separated from irradiated anchovy revealed specific signals (g=2.002,1.998) derived from a hydroxyapatite radical, which intensities were in proportion to the irradiation doses and still detectable even after 6 months of storage at -2$0^{\circ}C$. Six kinds of hydrocarbons (HC) were observed in dried anchovy samples and 1,7-hexadecadiene and 1-hexadecene were only detected in irradiated anchovy at 1 kGy or more. Also among 3 kinds of radiation-induced 2-alkylcyclobutanones (2-ACB) observed, 2-dodecylcy-clobutanone and 2-tetradecylcyclobutanone were unique in irradiated anchovy. As a result, the concentration of radiation-induced HCs and 2-ACBs were dependent on the irradiation dose and detectable after 6 months of storage. However, TL and ESR analyses were found simpler than the other methods for identification of irradiated boiled-dried anchovy.

Cancer Gene Therapy : Chemosensitization by an Enzyme-Prodrug Activation Strategy

  • Chung, Injae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.11a
    • /
    • pp.35-39
    • /
    • 1997
  • Recent development of human genetics and techniques of gene transfer and expression have opened the way for investigating novel approaches based on the genetic modification of cells to treat both inherited and acquired diseases. This approach is referred to as gene therapy. Over the past few years, gene therapy has moved from the laboratory to phase I clinical trials. Although the clinical performance of gene transfer experiments is still in an early phase of development, the NIH of Health Recombinant DNA Advisory Comittee (RAC) has approved more than 150 protocols that involve gene transfer or putative gene therapy procedures in clinical settings. Many sectors of society in United States have participated in the design and formulation of these clinical trials through local Institutional Review Boards, the National Institutes of Health (NIH) RAC, the Chemotherapy Evaluation Program of the National Cancer institute, and the FDA. Currently, clinical trials involving gene modification are under way at many medical centers throughout the United Slates. The goals of these trials are as follows. (1) The design should be directed to short-term achievable goals. (2) Each clinical trial is best considered as an intermediate step in a multistep process. (3) The design should identify evaluable proximate endpoints for toxicity and for efficacy, (4) The potential benefits and possible risks for patients participating in these trial should be defined.

  • PDF

Direct radio-iodination of folic acid for targeting folate receptor-positive tumors

  • Huynh, Phuong Tu;Lee, Woonghee;Ha, Yeong Su;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • The folate receptor (FR) is a promising cell membrane-associated target for nuclear imaging of various cancers (via imaging $FR-{\alpha}$) and potentially also inflammatory diseases (via imaging $FR-{\beta}$), through the use of folic acid-based radioconjugates. However, there have been several drawbacks of previously reported radioconjugates, such as a short half-life of the radiolabel ($^{68}Ga\;t_{1/2}$ 68 min), a complex and time-consuming multistep radiosynthesis, and a high renal uptake of radiolabeled folate derivatives. The goal of this study was to develop an imaging probe by directly labeling folate with radioactive iodine without using an extra prosthetic group. The radiolabeling of folate was optimized using various labeling conditions and the labeled tracers were isolated by high-performance liquid chromatography. The in vitro stability of labeled folate was checked in phosphate-buffered saline and serum. The tumor-targeting efficacy of the probe was also evaluated by biodistribution studies using a murine 4T1 tumor model.