• Title/Summary/Keyword: Multispectral Camera(MSC)

Search Result 9, Processing Time 0.025 seconds

Preliminary Design of Electric Interface It Software Protocol of MSC(Multi-Spectral Camera) on KOMPSAT-II (다목적실용위성 2호 고해상도 카메라 시스템의 전기적 인터페이스 및 소프트웨어 프로토콜 예비 설계)

  • 허행팔;용상순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.101-101
    • /
    • 2000
  • MSC(Multispectral Camera), which will be a unique payload on KOMPSAT-II, is designed to collect panchromatic and multi-spectral imagery with a ground sample distance of 1m and a swath width of 15km at 685km altitude in sun-synchronous orbit. The instrument is designed to have an orbit operation duty cycle of 20% over the mission life time of 3 years. MSC electronics consists of three main subsystems; PMU(Payload Management Unit), CEU(Camera Electronics Unit) and PDTS(Payload Data Transmission Subsystem). PMU performs all the interface between spacecraft and MSC, and manages all the other subsystems by sending commands to them and receiving telemetry from them with software protocol through RS-422 interface. CEU controls FPA(Focal Plane Assembly) which contains TDI(Timc Delay Integration) CCD(Charge Coupled Device) and its clock drivers. PMU provides a Master Clock to synchronize panchromatic and multispectral camera. PDTS performs compression, storage and encryption of image data and transmits them to the ground station through x-band.

  • PDF

Design of a Reorganization and Non-Uniformity Correction Module for CCD Pixels in MSC(Multispectral Camera)

  • Kong, Jon-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Paik, Hong-Yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.1-177
    • /
    • 2001
  • This paper describes the design of a NUC(Non-uniformity Correction) module in MSC(Multispectral Camera) which will be a payload on KOMPSAT. This module is required inside a system with data compression module like MSC to minimize the loss of imagery due to non-uniform characteristics between CCD pixels when the imagery is received and processed on a ground station. It comprises Hotlink input/output for imagery data, RS-422 interface with main controller in MSC, a number of SRAMS for storing imagery data and parameters, FPGA controllers which control the entire NUC module under the control of main controller, etc. It inputs 8-channel imagery pixel data which consist of 2-channel MS(Multispectral) band and ...

  • PDF

Model Calculation of Total Radiances for KOMPSAT-2 MSC (다목적실용위성 2호 MSC 총복사량의 모델 계산)

  • 김용승;강치호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.211-218
    • /
    • 2001
  • We have performed the calculation of total radiances for the KOMPSAT-2 Multispectral Camera (MSC) using a radiative transfer model of MODTRAN and examined its results. To simulate four seasonal conditions in the model calculation, we used model atmospheres of mid-latitude winter and summer for calculations of January 15 and July 15, and US standard for April 15 and October 15, respectively. Orbital parameters of KOMPSAT-2 and the seasonal solar zenith angles were taken into account. We assumed that the meteorological range is the tropospheric aerosol extinction of 50 km and surface albedo is the global average of clear-sky albedo of 0.135. MSC contract values are found to be considerably greater in the MSC spectral range than the total radiances calculated with the above general conditions. It is also shown that the spectral behavior of model results with the constant surface albedo differs from the pattern of MSC contract values. From these results, it can be inferred that the forthcoming MSC images would be somewhat dark.

MODTRAN 모델을 이용한 다목적 실용위성 2호 MSC의 입사복사량 계산

  • Kim, Yong-Seung;Kang, Chi-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.173-176
    • /
    • 2002
  • This report summarizes the results of MODTRAN model that are used for the calculation of input radiance of the KOMPSAT-2 Multispectral Camera (MSC). We have calculated the input radiances for four months: January 15, April 15, July 15 and October 15. Annual averages are the arithmetic mean of results from four months. We used the mid-latitude winter and summer for the month of January and July, respectively, while US standard atmospheres are used for April and October. The orbital characteristics of KOMPSAT-2 and the seasonal variations of solar zenith angle over the Korean peninsula were incorporated as inputs to the model. The tropospheric aerosol extinction (visibility = 50 km) was assumed. The surface albedo used in the model calculation represents the global annual mean clear-sky albedo. MSC contract values are found to be considerably greater in the MSC spectral range than the total radiances calculated with the above general conditions. From these results, it can be inferred that the forthcoming MSC images would be somewhat dark. We certainly need a countermeasure for this issue.

  • PDF

Calculating Total Radiances of KOMPSAT-2 MSC (다목적실용위성 2호 MSC 총복사량을 계산하며)

  • 김용승;강치호
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.85-90
    • /
    • 2001
  • 대기복사모델인 MODRAN를 이용해 다목적실용위성 2호 탑재체인 Multispectral Camera (MSC)의 총복사량에 대한 계산을 수행하고 그 결과를 분석해 보았다. 모델계산은 4계절 조건을 모의실험하기 위해 1월 15일, 4월 15일, 7월 15일과 10월 15일에 대해 중위고 동절기 및 하절기, 그리고 US 표준대기를 사용했다. 다목적실용위성 2호 궤도 조건과 각 계절에 대한 대표적인 태양천정각 (solar zenith angle)을 이용하였다. 사정거리는 대류권 에어로솔 소광계수 (tropospheric aerosol extinction)에 해당하는 50 km를 사용하고 지표의 알비도는 맑은 날 지구 연평균 값에 해당하는 0.135가 사용되었다. 위 4개월 평균치로써 연평균 총복사량은 MSC 계약서에 명시된 값들과 상당한 차이를 보였고 심지어 파장에 따른 경향조차도 서로 다름을 알 수 있었다. 가시광선 대역에서 근적외선 대역으로 파장이 증가함에 따라 두 값의 차이가 커짐을 보였다.

  • PDF

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

Optical Systems of the High-resolution Cameras for the KOMPSAT Payloads (다목적실용위성탑재 고해상도 카메라의 광학계 개발)

  • 이승훈;백홍열
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.36-37
    • /
    • 2000
  • 정밀 지상관측 위성인 다목적실용위성 1호기에는 해상도 6.6 m인 전자광학카메라(EOC)가 탑재되어 현재 우수한 영상을 보내오고 있으며 2003년 발사예정인 2호기를 위하여 해상도 1 m의 Multispectral Camera(MSC)가 개발중이다. 미 TRW 사가 제작한 EOC 개발에 항우연의 연구진은 그 설계 및 시험의 각 단계별 검토와, 탑재, 위성전체 시험과 보정을 포함한 궤도운용 등의 수행과 함께, 개발기간 동안 현지에서 수행된 별도의 현장교육을 통하여 동급의 위성카메라를 실제 개발할 수 있는 설계기술을 이전받았다. 수차례 대구경 비구면 광학계 제작 경험을 더한 항우연은 MSC 공동개발선인 이스라엘 ELOP 사와 현재 그 설계를 진행하고 있다. (중략)

  • PDF

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF