• Title/Summary/Keyword: Multispan Beam

Search Result 4, Processing Time 0.015 seconds

Mode Localization Phenomenon in Non-Periodic Multispan Beams (불규칙 다경간 보의 모우드 편재현상에 관한 연구)

  • 김동옥;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.211-216
    • /
    • 1997
  • The mode localization phenomenon in non-periodic multispan beam is theoretically investigated. When localization occurs, the free vibration amplitude of a normal mode becomes confined to a local region of the structure. It is well known that the weakly coupled periodic structures are sensitive to certain types of periodicity-breaking disorder, resulting in the mode localization. The results of this study indicate that the mode localization occurs also in nonperiodic structures and the degrees of mode localization of some modes are very sensitive to system parameters. Free vibration analysis of simply supported two-span beams of arbitrary span lengths is performed. Degrees of mode localization and their sensitivities to system parameters are appraised by considering the characteristic graph and the structural line defined in this study first.

  • PDF

Development of Optimum Design Program for PPC Structures using DCOC (이산성 연속형 최적성 규준을 이용한 PPC 구조의 최적설계프로그램 개발)

  • 한상훈;조홍동;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.315-325
    • /
    • 1997
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) and the development of optimum design program for the multispan partially prestressed concrete beams. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non-prestressing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design Code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, eccentricity of prestressing steel and non-prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. The self-weight of the structure is included in the equilibrium equation of the real system, as is the secondary effect resulting from the prestressing force. An iterative procedure and computer program for updating the design variables are developed. Two numerical examples of multispan PPC beams with rectangular cross-section are solved to show the applicability and efficiency of the DCOC-based technique.

  • PDF

Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports (지점 위에 질량과 강성이 큰 연결기를 갖는 다경간 보의 모드편재)

  • Dong-Ok Kim;Sun-Kyu Park;In-Won Lee
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1166-1171
    • /
    • 1998
  • The influences of the coupler consisting of stiffness and mass between neighboring two spans on mode localization are studied theoretically, and the results are confirmed by numerical examples. The mass of the coupler makes a structure sensitive to mode localization especially in higher modes while the stiffness does in all modes. A new type of delocalization phenomenon is observed for the first time in some modes for which mode localization does not occur or is very weak although structural disturbances are severe. A spring-mass system consisting of two substructures and a coupler connecting them is considered in the part of analytical study. As example structures for numerical analysis. simply supported continuous two-span beams with a coupler having a rotational stiffness and a mass moment of inertia on the mid support are considered.

  • PDF

Development of DCOC Algorithm Considering the Variation of Effective Depth in the Optimum Design of PRC Continuous Beam (PRC연속보 최적설계에서 단면의 유효깊이 변화를 고려한 DCOC알고리즘 개발)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.281-291
    • /
    • 2002
  • This paper describes the minimum cost design of prestressed reinforced concrete (PRC) hem with rectangular section. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non prestressing steel, and formwork is minimized. The design constraints include limits on the minimum deflection, flexural and shear strengths, in addition to ductility requirements, and upper-Lower bounds on design variables as stipulated by the specification. The optimization is carried out using the methods based on discretized continuum-type optimality criteria(DCOC). Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables - effective depth, eccentricity of prestressing steel and non prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. In this paper the effective depth is considered to be freely-varying and one uniform for the entire multispan beam respectively. Also the maximum eccentricity of prestressing force is considered in every span. In order to show the applicability and efficiency of the derived algorithm, several numerical examples of PRC continuous beams are solved.