• 제목/요약/키워드: Multiscale kernels

검색결과 3건 처리시간 0.016초

Multiscale Implicit Functions for Unified Data Representation

  • Yun, Seong-Min;Park, Sang-Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권12호
    • /
    • pp.2374-2391
    • /
    • 2011
  • A variety of reconstruction methods has been developed to convert a set of scattered points generated from real models into explicit forms, such as polygonal meshes, parametric or implicit surfaces. In this paper, we present a method to construct multi-scale implicit surfaces from scattered points using multiscale kernels based on kernel and multi-resolution analysis theories. Our approach differs from other methods in that multi-scale reconstruction can be done without additional manipulation on input data, calculated functions support level of detail representation, and it can be naturally expanded for n-dimensional data. The method also works well with point-sets that are noisy or not uniformly distributed. We show features and performances of the proposed method via experimental results for various data sets.

2차원 점 데이터의 다중해상도 표현 (Multi-resolution Representation of 2D Point Data)

  • 윤성민;이문배;박상훈
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권7호
    • /
    • pp.768-774
    • /
    • 2010
  • 흩어진 점 데이터의 집합으로부터 음함수 곡면을 생성하는 기법들이 다양한 과학과 공학 분야에서 개발되어 활용되고 있다. 본 논문에서는 다중스케일 커널을 이용하여 2차원 점 데이터를 함수 형태로 표현하고, 이것이 실시간 데이터 액세스가 필요한 그래픽스 응용에 효과적으로 활용될 수 있음을 보인다. 전처리 단계에서 계산되고 저장된 함수 계수들을 이용해, 실시간 응용 프로그램에서 임의의 위치에 대한 함수 값을 액세스하는 과정은 기존의 연구 방법들과 유사하지만, 실시간 처리 과정에서 사용자가 원하는 섬세한 레벨의 함수 값을 자유롭게 선택할 수 있다는 점에서 본 기법은 다른 기법들과 차별된다. 내재적으로 다중해상도 표현을 지원하는 함수를 계산할 수 있는 것은 멀티 스케일 커널이 갖는 수학적인 특성에 기인하며, 이 커널은 2차원뿐만 아니라 n차원 데이터의 다중해상도 표현을 위해 확장가능하다.

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.