• Title/Summary/Keyword: Multipurpose dam

Search Result 119, Processing Time 0.028 seconds

Impacts of Yongdam dam managment Plan on Daechung dam Storage (용담댐 관리계획이 대청댐 저수량에 미치는 영향)

  • 박정남;이재면;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.550-555
    • /
    • 1999
  • yongdam multipurpose is under construction to divert a part fo Geum riverlfow to Mankyung watershed and to supply the domestic water to the Chunju region and produce the hydro-electricity. Generally construction of dam by the method of inther-region water transfer affects the quantity and quality of water inthe down streams and reservoirs. The impact of operation plan of Yondgam dam on the quantity and quality of water in the Guem river and Daechung dam was investigated .It was recommended that the discharge of water transfer from one watershed to another should be minimized as much as possible.

  • PDF

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

A Study on Assessment of Output Available from Multi prupose Dam Project in its Optimization Study. (다목적댐의 최적개발을 위한 산출량평가방법에 관한 연구)

  • 김요택
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.70-76
    • /
    • 1979
  • This study aims at rationalization of assessment method of the output such as power generation and water supply avaiable from a multipurpose dam project in its optimization study. The computer program proposed in this stuidy has much contributed toward rationalization of the optimization study of Chungju Multipurpose Dam Project saving much labor as well as time. This computer program which has been developed in this study may be also applicable to other porject similar to Chungju Project.

  • PDF

Multipurpose Dam Operation Models for Flood Control Using Fuzzy Control Technique ( I ) - Development of Single Dam Operation Models - (퍼지제어모형을 이용한 다목적 댐의 홍수조절모형( I ) - 단일댐의 운영모형 개발 -)

  • Shim, Jae-Hyun;Kim, Ji-Tae;Heo, Jun-Haeng;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.33-40
    • /
    • 2004
  • The objective of this study is to develop single dam operation models for flood control using Fuzzy control technique, which can improve flood controllability. We set control rules by water level and inflow, and developed three models Fuzzy I, II, III according to rule to decide outflow. Fuzzy I model consists of six rules considering only flood control and Fuzzy II model considers the effect of water use by increasing water level at the end of flood control period as well as flood control during the same period. Finally, Fuzzy m is an adaptive model designed to perform multipurpose dam operation for both flood control and water use simultaneously based on a control rules.

Prediction of multipurpose dam inflow using deep learning (딥러닝을 활용한 다목적댐 유입량 예측)

  • Mok, Ji-Yoon;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, Artificial Neural Network receives attention as a data prediction method. Among these, a Long Shot-term Memory (LSTM) model specialized for time-series data prediction was utilized as a prediction method of hydrological time series data. In this study, the LSTM model was constructed utilizing deep running open source library TensorFlow which provided by Google, to predict inflows of multipurpose dams. We predicted the inflow of the Yongdam Multipurpose Dam which is located in the upper stream of the Geumgang. The hourly flow data of Yongdam Dam from 2006 to 2018 provided by WAMIS was used as the analysis data. Predictive analysis was performed under various of variable condition in order to compare and analyze the prediction accuracy according to four learning parameters of the LSTM model. Root mean square error (RMSE), Mean absolute error (MAE) and Volume error (VE) were calculated and evaluated its accuracy through comparing the predicted and observed inflows. We found that all the models had lower accuracy at high inflow rate and hourly precipitation data (2006~2018) of Yongdam Dam utilized as additional input variables to solve this problem. When the data of rainfall and inflow were utilized together, it was found that the accuracy of the prediction for the high flow rate is improved.

Hydrological Stability Analysis of the Existing Soyanggang Multipurpose Dam

  • Ko, Seok-Ku;Shin, Yong-Lo
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.37-49
    • /
    • 1996
  • This study aims at suggesting an alternative to improve flood controling capacity according to the cument design criteria for the existing Soyanggang Multi-purpose Dam which was constructed 20 years ago as the largest dam in Korea. The peak inflow of the adopted probable maximum flood (PMF) at the time of construction was 13,500 $m^3$/s. However, the newly estimated peak inflow of the PMF is 18,000 $m^3$/s which is 1.34 times bigger than the original one. This is considered to be due to the accumulation of the reliable flood and storm event records after construction, and due to the increasing tendency of the local flood peaks according to the influence of world-wide weather change. The new estimation of the probable maximum precipitation (PMP) was based on the hydro-meteorological method suggested by the guideline of the World Meteorological Organization (WMO). The unit hydrograph which was applied for the estimation of PMF was derived through linear programming algorithm by minimizing the sum of absolute deviations of the calculated and recorded flood hydrographs. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared : (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing spillway, (3) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang dam, (4) raising the existing dam crest. The preliminary evaluation of these alternatives resulted in that the second alternative is most economic and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multipurpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

A Study on Estimate of Evaluation Indices of Water Supply Capacity for Multipurpose Dam (다목적댐의 응수공급능력 평가지표 산정에 관한 연구)

  • Cha, Sang Hwa;Park, Gi Beom
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2004
  • In this study analyzed the reliability indices against the water supply ability of Andong dam. The water supply analysis of Andong dam used the HEC-5 model. So Andong dam simulated planed water-supply capacity of Andong dam as increase and decrease +5% ~ -5% of water supply quantity. Water-supply capacity of Andong dam estimated, deficit occurrence, deficit quantity, deficit period. As the results estimated reliability(occurrence based, time based, quantity based) and resiliency vulnerability and with water supply capacity evaluation indices of Andong dam. Also reliability(occurrence based, time based, quantity based), resiliency, vulnerability and resiliency indices are estimated to evaluated the performance of water supply on Andong dam, and their relationships are evaluated.