• Title/Summary/Keyword: Multiplication sign

Search Result 28, Processing Time 0.028 seconds

32-bit MAC Architecture of a RISC Processor for Portable Terminals (휴대단말용 RISC 프로세서의 32비트 MAC 구조)

  • 정갑천;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.357-360
    • /
    • 2000
  • In this paper, we designed 32-Hit MAC architecture of a RISC Processor for portable terminals such as cellular telephones, personal digital assistants, notebooks, etc. In order to have minimum area with best performance, the MAC performs 32 by 8 multiplication per cycle, with early termination circuit that enables multiply cycles depend on the value of multiplier. It uses the sign bit of a partial product and two extra bits for sign extension, The MAC is modeled and simulated in RTL using VHDL. The MAC is synthesized using IDEC C-631 Cell library based on 0.6$\mu\textrm{m}$ CMOS 1-Poly 3-metal CMOS technology.

  • PDF

Improved Performance of FSE for the ISI Reduction Pulse Diagnostic Apparatus Data Channel (맥진단기 채널의 ISI 감소를 위한 FSE 성능개선)

  • 윤달환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1346-1353
    • /
    • 1999
  • We propose the MADF(multiplication free adaptive digital filter) algorithm and implement the fractionally spaced equalizer based on it. To evaluate the performance of proposed MADF algorithm, fractionally spaced equalizer(FSE) is used. Especially, we present that this method have the advantages for the condition having the low-frequency and slow speed

  • PDF

Sign-Extension Overhead Reduction by Propagated-Carry Selection (전파캐리의 선택에 의한 부호확장 오버헤드의 감소)

  • 조경주;김명순;유경주;정진균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.632-639
    • /
    • 2002
  • To reduce the area and power consumption in constant coefficient multiplications, the constant coefficient can be encoded using canonic signed digit(CSD) representation. When the partial product terms are added depending on the nonzero bit(1 or -1) positions in the CSD-encoded multiplier, all sign bits are properly extended before the addition takes place. In this paper, to reduce the overhead due to sign extension, a new method is proposed based on the fact that carry propagation in the sign extension part can be controlled such that a desired input bit can be propagated as a carry. Also, a fixed-width multiplier design method suitable for CSD multiplication is proposed. As an application, 43-tap filbert transformer for SSB/BPSK-DS/CDMA is implemented. It is shown that, about 16∼28% adders can be saved by the proposed method compared with the conventional methods.

TinyECCK : Efficient Implementation of Elliptic Curve Cryptosystem over GF$(2^m)$ on 8-bit Micaz Mote (TinyECCK : 8 비트 Micaz 모트에서 GF$(2^m)$상의 효율적인 타원곡선 암호 시스템 구현)

  • Seo, Seog-Chung;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.9-21
    • /
    • 2008
  • In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF$(2^m)$ on sensor motes using small word size is not appropriate because partial XOR multiplication over GF$(2^m)$ is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF$(2^m)$ on sensor motes, their performances are not satisfactory enough due to the redundant memory accesses that result in inefficient field multiplication and reduction. Therefore, we propose some techniques for reducing unnecessary memory access instructions. With the proposed strategies, the running time of field multiplication and reduction over GF$(2^{163})$ can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (Signing and verification) by around $15{\sim}19%$.

A Study on Twofold Interpretation and Concept Extension of Stochastic Independence (확률의 독립성의 개념 확장과 이중적 관점에 대한 고찰)

  • Cho, Cha-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.2
    • /
    • pp.257-271
    • /
    • 2009
  • Stochastical independence is separated into two. One can be intuitively judged and the other is not. Independence is a concept based on assumption. However, It is defined as multiplication rule and it has produced extension of concept. Analysis on this issue is needed, assuming the cause is on the intersection sign which is used for both simultaneous events and compatible events. This study presented the extension process of independence concept in detail and constructed twofold interpretation of simultaneous events and compatible events which use the same sign $P(A\cap{B})$ with Pierce Semiotics.

  • PDF

Hardware Design of High Performance Arithmetic Unit with Processing of Complex Data for Multimedia Processor (복소수 데이터 처리가 가능한 멀티미디어 프로세서용 고성능 연산회로의 하드웨어 설계)

  • Choi, Byeong-yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.123-130
    • /
    • 2016
  • In this paper, a high-performance arithmetic unit which can efficiently accelerate a number of algorithms for multimedia application was designed. The 3-stage pipelined arithmetic unit can execute 38 operations for complex and fixed-point data by using efficient configuration for four 16-bit by 16-bit multipliers, new sign extension method for carry-save data, and correction constant scheme to eliminate sign-extension in compression operation of multiple partial multiplication results. The arithmetic unit has about 300-MHz operating frequency and about 37,000 gates on 45nm CMOS technology and its estimated performance is 300 MCOPS(Million Complex Operations Per Second). Because the arithmetic unit has high processing rate and supports a number of operations dedicated to various applications, it can be efficiently applicable to multimedia processors.

Design of a High Performance 32$\times$32-bit Multiplier Based on Novel Compound Mode Logic and Sign Select Booth Encoder (새로운 복합모드로직과 사인선택 Booth 인코더를 이용한 고성능 32$\times$32-bit 곱셈기의 설계)

  • Kim, Jin-Hwa;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • In this paper, a novel compound mode logic based on the advantage of both CMOS logic and pass-transistor logic(PTL) is proposed. From the experimental results, the power-delay products of the compound mode logic is about 22% lower than that of the conventional CMOS logic, when we design a full adder. With the proposed logic, a high performance 32$\times$32-bit multiplier has been fabricated with 0.6um CMOS technology. It is composed of an improved sign select Booth encoder, an efficient data compressor based on the compound mode logic, and a 64-bit conditional sum adder with separated carry generation block. The Proposed 32$\times$32-bit multiplier is composed of 28,732 transistors with an active area of 1.59$\times$1.68 mm2 except for the testing circuits. From the measured results, the multiplication time of the 32$\times$32-bit multiplier is 9.8㎱ at a 3.3V power supply, and it consumes about 186㎽ at 100MHz.

  • PDF

Design of a Floating Point Multiplier for IEEE 754 Single-Precision Operations (IEEE 754 단정도 부동 소수점 연산용 곱셈기 설계)

  • Lee, Ju-Hun;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.778-780
    • /
    • 1999
  • Arithmetic unit speed depends strongly on the algorithms employed to realize the basic arithmetic operations.(add, subtract multiply, and divide) and on the logic design. Recent advances in VLSI have increased the feasibility of hardware implementation of floating point arithmetic units and microprocessors require a powerful floating-point processing unit as a standard option. This paper describes the design of floating-point multiplier for IEEE 754-1985 Single-Precision operation. Booth encoding algorithm method to reduce partial products and a Wallace tree of 4-2 CSA is adopted in fraction multiplication part to generate the $32{\times}32$ single-precision product. New scheme of rounding and sticky-bit generation is adopted to reduce area and timing. Also there is a true sign generator in this design. This multiplier have been implemented in a ALTERA FLEX EPF10K70RC240-4.

  • PDF

Performance Study of genus 3 Hyperelliptic Curve Cryptosystem

  • Gupta, Daya;De, Asok;Chatterjee, Kakali
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.145-158
    • /
    • 2012
  • Hyperelliptic Curve Cryptosystem (HECC) is well suited for all kinds of embedded processor architectures, where resources such as storage, time, or power are constrained due to short operand sizes. We can construct genus 3 HECC on 54-bit finite fields in order to achieve the same security level as 160-bit ECC or 1024-bit RSA due to the algebraic structure of Hyperelliptic Curve. This paper explores various possible attacks to the discrete logarithm in the Jacobian of a Hyperelliptic Curve (HEC) and addition and doubling of the divisor using explicit formula to speed up the scalar multiplication. Our aim is to develop a cryptosystem that can sign and authenticate documents and encrypt / decrypt messages efficiently for constrained devices in wireless networks. The performance of our proposed cryptosystem is comparable with that of ECC and the security analysis shows that it can resist the major attacks in wireless networks.

A study on implementation of optical high-speed multiplier using multiplier bit-pair recoding derived from Booth algorithm (Booth 알고리즘의 승수 비트-쌍 재코딩을 이용한 광곱셈기의 구현에 관한 연구)

  • 조웅호;김종윤;노덕수;김수중
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.107-115
    • /
    • 1998
  • A multiplier bit-pair recoding technique derived from Booth algorithm is used as an effective method that can carry out a fast binary multiplication regardless of a sign of both multiplicand and multiplier. In this paper, we propose an implementation of an optical high-speed multiplier which consists of a symbolic substitution adder and an optical multiplication algorithm, which transforms and enhances the multiplier bit-pair recoding algorithm to be fit for optical characteristics. Specially, a symbolic substitution addition rules are coded with a dual-rail logic, and so the complement of the logic of the symbolic substitution adder is easily obtained with a shift operation because it is always present. We also construct the symbolic substitution system which makes superposition image by superimposing two shifted images in a serial connection and recognizes a reference image by feeding this superimposed image to a mask. Thus, the optical multiplier, which is compared with a typical system, is implemented to the smaller system by reducing the number of optical passive elements and the size of this system.

  • PDF