• Title/Summary/Keyword: Multiplex culture

Search Result 57, Processing Time 0.029 seconds

Gene Editing for Major Allergy Genes using Multiplex CRISPR-Cas9 System & Prime editing in Peanuts (Arachis hypogaea L.)

  • Min-cheol Kim;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.194-194
    • /
    • 2022
  • Recently, food-induced allergies have emerged as major global concerns. In the past ten years, it has doubled in western nations, and it has also increased in Asia and Africa. In many cases of food allergy, peanut allergy is prevalent, typically permanent, and frequently life-threatening. Therefore, we utilized gene editing techniques on the three major allergen genes in peanuts, Ara h 1, Ara h 2, and Ara h 3. Using gibson assembly and golden gate assembly, we created two vectors, the gRNA-tRNA array CRISPR-Cas9 system and Prime-editing. Using LBA4404 strain and agrobacterium-mediated transformation, the vectors were transferred to two elite Korean peanut lines. After co-cultivation and tissue culture, we extracted the tissue cultured peanut DNA amplified the hygromycin resistance gene and Cas9 gene in the T-DNA region. The integration of the T-DNA region into the host genome was demonstrated by the presence of a specific band in some samples. There have only been a few reported peanut gene editing studies. So, this study will contribute to peanut allergy and gene editing research.

  • PDF

Gene Editing for Major Allergy Genes using Multiplex CRISPR-Cas9 System & Prime Editing in Peanuts (Arachis hypogaea L.)

  • Min-cheol Kim;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.200-200
    • /
    • 2022
  • Recently, food-induced allergies have emerged as major global concerns. In the past ten years, it has doubled in western nations, and it has also increased in Asia and Africa. In many cases of food allergy, peanut allergy is prevalent, typically permanent, and frequently life-threatening. Therefore, we utilized gene editing techniques on the three major allergen genes in peanuts, Ara h 1, Ara h 2, and Ara h 3. Using gibson assembly and golden gate assembly, we created two vectors, the gRNA-tRNA array CRISPR-Cas9 system and Prime-editing. Using LBA4404 strain and agrobacterium-mediated transformation, the vectors were transferred to two elite Korean peanut lines. After co-cultivation and tissue culture, we extracted the tissue cultured peanut DNA amplified the hygromycin resistance gene and Cas9 gene in the T-DNA region. The integration of the T-DNA region into the host genome was demonstrated by the presence of a specific band in some samples. There have only been a few reported peanut gene editing studies. So, this study will contribute to peanut allergy and gene editing research.

  • PDF

Candida non albicans with a High Amphotericin B Resistance Pattern Causing Candidemia among Cancer Patients

  • Kalantar, Enayatollah;Assadi, Mojan;Pormazaheri, Helen;Hatami, Shiva;Barari, Maryam Agha;Asgari, Esfandiar;Mahmoudi, Elaheh;Kabir, Kourosh;Marashi, Seyed Mahmoud Amin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10933-10935
    • /
    • 2015
  • Background: Many scientists have reported Candida species to be of great concern because of the high frequency that they colonize and infect human hosts, particularly cancer patients. Moreover, in the last decades Candida species have developed resistance to many antifungal agents. Based on this, we aimed to identify and determine the prevalence of Candida spp from blood culture bottles among cancer patients and their antifungal resistance pattern. Materials and Methods: From the blood culture bottles isolation and identification of the Candida spp were performed by conventional microbiological techniques. The in vitro antibiotic resistance pattern of the isolates was determined by CLSI guidelines. Genomic DNA was isolated and amplified. Each gene was separated by agar gel electrophoresis. Results: Identification of Candida spp was based on the presence of yeast cells in direct examination, culture and DNA extraction. Of the 68 blood samples collected during the study period (April 2013 to October 2013), five (7.35%) were positive for the presence of Candida spp, 2 (40%) of which were identified as Candida albicans and 3 (60%) were Candida non-albicans. Conclusions: High resistance to amphotricin B was observed among all the Candida non-albicans isolates. Regular investigations into antifungal resistance will help us to get an updated knowledge about their antibiotic resistance pattern which may help the physician in selecting the antibiotics for empirical therapy.

A Study of the Hybrid Characteristics of Make-up - Focusing on Vogue Magazine - (메이크업의 하이브리드 특성 연구 - 보그(Vogue)지를 중심으로 -)

  • Lee, Youn-Jeong
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.1
    • /
    • pp.91-100
    • /
    • 2010
  • In the rapid development of science, technology, information, cultural industry during the 21st century, hybridity is consistently shown in which different techniques, systems, and sorts in society, industry, culture, and art are combined. The purpose of this study is to analyze the formative characteristics of hybrid make-up that is shown in the field of make-up as a practical art reflecting society and culture of a specific period, to understand the tendencies of modern make-up, and to present data for predicting changes in the future. According to the results of this study, the hybrid characteristics of make-up indicate as follows. First, hybrid make-up at a timely aspect in which senses transcending times by mixed expression of traditional classicism and modernism coexist and mingled, Characteristics of hybrid make-up at a local aspect are shown in one make-up by expressing modern tendencies that break from homogeneity, uniformity, and concentration as interests in other cultures and borrowing them in modern images. Also in modern period, characteristics of hybrid make-up at a cultural aspect are shown by mixed expression of conflicting cultural factors such as modern beauty of cutting-edge technology, female & male, and elegance & activeness in one makeup. Within the multiplex, modern social system in this period of cutting-edge technology, "tendency of hybrid design" as a social, cultural phenomenon is shown to be a complex, new designing tendency due to mixture and deconstruction of various genres. Hybrid make-up, seeking diversification and open-mindedness, is predicted to be consistently developed owing to infinite materials of design, being expected to be stronger and newer in the future.

Diversity Evaluation of Xylella fastidiosa from Infected Olive Trees in Apulia (Southern Italy)

  • Mang, Stefania M.;Frisullo, Salvatore;Elshafie, Hazem S.;Camele, Ippolito
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • Olive culture is very important in the Mediterranean Basin. A severe outbreak of Olive Quick Decline Syndrome (OQDS) caused by Xylella fastidiosa infection was first noticed in 2013 on olive trees in the southern part of Apulia region (Lecce province, southern Italy). Studies were carried out for detection and diversity evaluation of the Apulian strain of Xylella fastidiosa. The presence of the pathogen in olive samples was detected by PCR amplifying the 16S rDNA, gyrase B subunit (gyrB) and HL hypothetical protein genes and single nucleotide polymorphisms (SNPs) assessment was performed to genotype X. fastidiosa. Twelve SNPs were recorded over gyrB and six SNPs were found for HL gene. Less variations were detected on 16S rDNA gene. Only gyrB and HL provided sufficient information for dividing the Apulian X. fastidiosa olive strains into subspecies. Using HL nucleotide sequences was possible to separate X. fastidiosa into subspecies pauca and fastidiosa. Whereas, nucleotide variation present on gyrB gene allowed separation of X. fastidiosa subsp. pauca from the other subspecies multiplex and fastidiosa. The X. fastidiosa strain from Apulia region was included into the subspecies pauca based on three genes phylogenetic analyses.

A Simple, Single Triplex PCR of IS6110, IS1081, and 23S Ribosomal DNA Targets, Developed for Rapid Detection and Discrimination of Mycobacterium from Clinical Samples

  • Nghiem, Minh Ngoc;Nguyen, Bac Van;Nguyen, Son Thai;Vo, Thuy Thi Bich;Nong, Hai Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.745-752
    • /
    • 2015
  • Tuberculosis (TB) is the most common mycobacterial infection in developing countries, requiring a rapid, accurate, and well-differentiated detection/diagnosis. For the rapid detection and discrimination of Mycobacterium tuberculosis complex (MTC) from non-tuberculous mycobacteria (NTM), a novel, simple, and primer-combined single-step multiplex PCR using three primer pairs (6110F-6110R, 1081F-1081R, and 23SF-23SR; annealing on each of IS6110, IS1081, and 23S rDNA targets), hereafter referred to as a triplex PCR, has been developed and evaluated. The expected product for IS6110 is 416 bp, for IS1081 is 300 bp, and for 23S rDNA is 206 bp by single PCR, which was used to verify the specificity of primers and the identity of MTC using DNA extracted from the M. tuberculosis H37Rv reference strain (ATCC, USA) and other mycobacteria other than tuberculosis (MOTT) templates. The triplex PCR assay showed 100% specificity and 96% sensitivity; the limit of detection for mycobacteria was ~100 fg; and it failed to amplify any target from DNA of MOTT (50 samples tested). Of 307 blinded clinical samples, overall 205 positive M. tuberculosis samples were detected by single PCR, 142 by conventional culture, and 90 by AFB smear methods. Remarkably, the triplex PCR could subsequently detect 55 positive M. tuberculosis from 165 culture-negative and 115 from 217 AFB smear-negative samples. The triplex PCR, targeting three regions in the M. tuberculosis genome, has proved to be an efficient tool for increasing positive detection/discrimination of this bacterium from clinical samples.

A Color-Reaction-Based Biochip Detection Assay for RIF and INH Resistance of Clinical Mycobacterial Specimens

  • Xue, Wenfei;Peng, Jingfu;Yu, Xiaoli;Zhang, Shulin;Zhou, Boping;Jiang, Danqing;Chen, Jianbo;Ding, Bingbing;Zhu, Bin;Li, Yao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.180-189
    • /
    • 2016
  • The widespread occurrence of drug-resistant Mycobacterium tuberculosis places importance on the detection of TB (tuberculosis) drug susceptibility. Conventional drug susceptibility testing (DST) is a lengthy process. We developed a rapid enzymatic color-reaction-based biochip assay. The process included asymmetric multiplex PCR/templex PCR, biochip hybridization, and an enzymatic color reaction, with specific software for data operating. Templex PCR (tem-PCR) was applied to avoid interference between different primers in conventional multiplex-PCR. We applied this assay to 276 clinical specimens (including 27 sputum, 4 alveolar lavage fluid, 2 pleural effusion, and 243 culture isolate specimens; 40 of the 276 were non-tuberculosis mycobacteria specimens and 236 were M. tuberculosis specimens). The testing process took 4.5 h. A sensitivity of 50 copies per PCR was achieved, while the sensitivity was 500 copies per PCR when tem-PCR was used. Allele sequences could be detected in mixed samples at a proportion of 10%. Detection results showed a concordance rate of 97.46% (230/236) in rifampicin resistance detection (sensitivity 95.40%, specificity 98.66%) and 96.19% (227/236) in isoniazid (sensitivity 93.59%, specificity 97.47%) detection with those of DST assay. Concordance rates of testing results for sputum, alveolar lavage fluid, and pleural effusion specimens were 100%. The assay provides a potential choice for TB diagnosis and treatment.

Active Surveillance of Pertussis in Infants Under 6 Months of Age: A Single Center Experience from 2011 to 2013 (생후 6개월 미만의 영아에서 백일해에 대한 적극적인 감시활동: 2011-2013년 단일기관 연구)

  • Han, Young Ik;Choi, Ji Yeon;Lee, Hyewon;Lee, Teak-Jin
    • Pediatric Infection and Vaccine
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • Purpose: The objective of this study was to assess and investigate the epidemiology of pertussis in infants under 6 months of age. Methods: A prospective study was conducted between October 1, 2011 and April 30, 2013 in CHA Bundang Medical Center, Seongnam, South Korea. Polymerase chain reaction (PCR) or culture was used to detect Bordetella pertussis in nasopharyngeal aspirates from case patients who were hospitalized for acute lower respiratory tract infection (LRTI). In addition, multiplex real-time PCR assays were also performed to detect 6 etiologic viruses, including adenovirus, human metapeumo-virus, influenza virus, parainfluenza virus, respiratory syncytial virus and rhinovirus. Results: Of the 79 enrolled case patients, whose median age was 2 months of age, the most common diagnoses uncovered in this study were acute bronchiolitis (60%) and pneumonia (28%). B. pertussis infection was found in 13 cases (16%), in which 7 (53%) was coinfected with respiratory syncytial virus and 1 (7%) with influenza A virus. Of the 13 patients with B. pertussis infection, 6 (46%) were not vaccinated with the diphtheria, tetanus toxoid, and acellular pertussis vaccine, while 6 (46%) received 1 dose, and 1 (8%) received 2 doses. Conclusion: B. pertussis infection was present in 16% of under 6 month-old infants, who were hospitalized for acute LRTI. Therefore, a nationwide epidemiological surveillance of pertussis, including institutions that cater to infants under 6 months of age is necessary and needed.

Antibiotic Resistance and Plasmid Profile of Vibrio parahaemolyticus Strains Isolated from Kyunggi-Incheon Coastal Area (경기인천 연안에서 분리된 장염비브리오균의 항생제 내성 및 플라스미드 보유 현황)

  • Han, A-Rheum;Yoon, Young-June;Kim, Jung-Wan
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Vibrio parahaemolyticus is one of the major agents responsible for food poisoning during summer in Korea, which is transmitted via seawater or seafoods. Recently, distribution of the bacteria in the marine environment has been increased due to global warming. Great concern also has been raised regarding public hygiene as well as marine culture by the emergence of pathogens with antibiotic resistance. Therefore, distribution of V. parahaemolyticus and antibiotic resistance of the isolates were monitored in 7 coastal areas of Kyonggi Province and Incheon by sampling seawater, fishes and clams monthly. V. parahaemolyticus was detected from 47.7% of 966 samples (seawater 61.9%, seafoods 41.8%) analyzed using $CHROMagar^{TM}$ and TCBS agar plates as well as multiplex PCR. Among 13 antibiotics tested, resistance to vancomycin and ampicillin was observed in 97.3% and 87.3% of the isolates, respectively, and the ratios of them resistant to cephalothin (48.8%) and rifampin (46.1%) were also high. The isolates were most highly sensitive to chloramphenicol (91.7%) and trimethoprim-sulfamethoxazole (91.8%). The ratio of sensitivity for other antibiotics was also high in the descending order of gentamycin (82.3%), tobramycin (74.8%), nalidixic acid (71.6%), tetracyclin (69.4%), cefotaxime (63.0%). About 69% of the isolates showed multiple drug resistance toward 3 antibiotics including vancomycin and ampicillin. Two of them exhibited resistance for 11 antibiotics used in this study. Plasmid profile analysis of the isolates with antibiotic resistance revealed that 55.1% of them retained plasmids of 24 different types. However, no clear inter-relationship between the resistance and the plasmid profile has been observed.

Development of real-time PCR for rapid detection of Mycobacterium bovis DNA in cattle lymph nodes and differentiation of M. bovis and M. tuberculosis (소 림프절에서 Mycobacterium bovis DNA의 신속 검출과 M. bovis와 M. tuberculosis 감별을 위한 real-time PCR 개발)

  • Koh, Ba-Ra-Da;Jang, Young-Boo;Ku, Bok-Kyung;Cho, Ho-Seong;Bae, Seong-Yeol;Na, Ho-Myung;Park, Seong-Do;Kim, Yong-Hwan;Mun, Yong-Un
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 2011
  • Mycobacterium bovis, a member of the M. tuberculosis complex (MTC), is the causative agent of bovine tuberculosis. Detection of M. bovis and M. tuberculosis using conventional culture- and biochemical-based assays is time-consuming. Therefore, a simple and sensitive molecular assay for rapid detection would be of great help in specific situations such as faster diagnosis of bovine tuberculosis (bTB) infection in the abattoirs. We developed a novel multiplex real-time PCR assay which was applied directly to biological samples with evidence of bTB and it was allowed to differentiate between M. bovis and M. tuberculosis. The primers and TaqMan probes were designed to target the IS1081 gene, the multi-copy insertion element in the MTC and the 12.7-kb fragment which presents in M. tuberculosis, not in the M. bovis genome. The assay was optimized and validated by testing 10 species of mycobacteria including M. bovis and M. tuberculosis, and 10 other bacterial species such as Escherichia coli, and cattle lymph nodes (n=113). The tests identified 96.4% (27/28) as M. bovis from the MTC-positive bTB samples using conventional PCR for specific insertion elements IS1081. And MTC-negative bTB samples (n=85) were tested using conventional PCR and the real-time PCR. When comparative analyses were conducted on all bovine samples, using conventional PCR as the gold standard, the relative accuracy of real-time PCR was 99.1%, the relative specificity was 100%, and the agreement quotient (kappa) was 0.976. The detection limits of the real-time PCR assays for M. bovis and M. tuberculosis genomic DNA were 10 fg and 0.1 pg per PCR reaction, respectively. Consequently, this multiplex real-time PCR assay is a useful diagnotic tool for the identification of MTC and differentiation of M. bovis and M. tuberculosis, as well as the epidemiologic surveillance of animals slaughtered in abattoir.