• Title/Summary/Keyword: Multiple-input multiple-output (MIMO) multiplexing

Search Result 139, Processing Time 0.159 seconds

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Study on 2×2 MIMO Detection in ATSC 3.0 Systems (ATSC 3.0 시스템에서 2×2 MIMO 검출에 대한 연구)

  • Lee, Woon Hyun;Kim, Jeongchang;Park, Sung Ik;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.755-764
    • /
    • 2017
  • In this paper, we design transmitter and receiver structures for a $2{\times}2$ multiple-input multiple-output (MIMO) in ATSC 3.0 systems and analyze the performance of the $2{\times}2$ MIMO system. In the ATSC 3.0 MIMO systems, spatial diversity and multiplexing gains can be obtained using the spatial demultiplexer and precoder. In this paper, we present the structures of the transmitter and receiver for ATSC 3.0 MIMO systems. Also, we present performance results of the $2{\times}2$ MIMO system through computer simulations.

Enhanced Bit-Loading Techniques for Adaptive MIMO Bit-Interleaved Coded OFDM Systems (적응 다중 안테나 Bit-Interleaved Coded OFDM 시스템을 위한 향상된 Bit-Loading 기법)

  • Cho, Jung-Ho;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • When channel state information (CSI) is available at the transmitter, the system throughput can be enhanced by adaptive transmissions and opportunistic multiuser scheduling. In this paper, we consider multiple-input multiple-output (MIMO) systems employing bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM). We first propose a bit-loading algorithm based on the Levin-Campello algorithm for the BIC-OFDM. Then we will apply this algorithm to the MIMO system with a finite set of constellations, by reassigning residual power on each stream Simulation results show that proposed bit-loading scheme which takes the residual power into account improves the system performance especially at high signal-to-noise ratio (SNR) range.

Unproved AMC-MIMO Multiplexing Systems Using Selection Transmit Diversities (선택적 전송다이버시티를 사용한 개선된 AMC-MIMO 다중화시스템)

  • Kang, Min-goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.652-657
    • /
    • 2003
  • In this paper, Adaptive Modulation and Coding (AMC) is combined with Multiple Input Multiple Output (MIMO) multiplexing to improve the throughput performance of AMC. In addition, a system that adopts Selection Transmit Diversity (STD) in the AMC-MIMO multiplexing system is proposed. The received SNR is improved by adopting STD techniques. And it increases probability of selecting MCS (Modulation and Coding Scheme) level that supports higher data rate. This leads to an increased throughput of the AMC-MIMO system. STD in our simulation selects 2 transmission antennas from 4 antennas and AMC-MIMO multiplexing process operates with the selected antennas. The computer simulation is performed in flat Rayleigh fading channel. The results show that the proposed system achieves a gain of 1Mbps over the AMC-MIMO multiplexing system with the same number of antennas at 15dB SNR.

An Efficient Channel Estimation Method in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 효율적인 채널 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Jun-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2275-2284
    • /
    • 2015
  • In this paper, the Walsh coded orthogonal training signals for 4 × 4 multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems are designed and the channel estimation equations are derived as a closed form, taking account of the inter training signal interference problems caused by the multi-path delayed signals. The performances of the proposed channel estimation method are analyzed and compared with the conventional methods[9,14] by using computer simulation. The simulation results show that the proposed methods has better performances, compared with the conventional methods[9,14]. As a result, the proposed method can be used for MIMO-OFDM systems with null sub-carriers.

New Transmit Antenna Selection Schemes for Multipath Environment (다중경로 환경을 위한 새로운 송신 안테나 선택 기법)

  • 임연주;민범석;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.607-613
    • /
    • 2004
  • The future wireless communication systems will use spatial multiplexing with Multiple Input Multiple Output(MIMO) system to take advantage of high spectral efficiencies. In such systems it will be desirable to select a sub-set of available transmit or receive antennas to reduce cost and complexity. In this paper we propose a novel transmit antenna selection schemes for MIMO systems which is suitable for multipath environment. The proposed transmit antenna selection schemes offer better BER performance than that of MIMO systems without antenna selection and with traditionally proposed antenna selection schemes.

Adaptive P-SLM Method with New Phase Sequence for PAPR Reduction of MIMO-OFDM Systems (MIMO-OFDM 시스템의 PAPR 감소를 위한 새로운 위상시퀀스의 적응형 P-SLM기법)

  • Yoo, Eun-Ji;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.149-156
    • /
    • 2011
  • MIMO-OFDM(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) has been spotlighted as a solution of high-quality service for next generation's wireless communications. However, like OFDM, one of main problems of MIMO-OFDM is the high PAPR(Peak-to-Average Power Ratio). In this paper, an adaptive P-SLM(Partitioned-SeLetive Mapping) based on new phase sequence is proposed to reduce PAPR. The proposed method has better performance and lower complexity than conventional method due to the use of periodic multiplication and adaptability by fixed critical PAPR value. Simulation results show that the proposed method has better performance and lower complexity than conventional method.

Performance Analysis for Spatial Multiplexing MIMO in MB-OFDM UWB Receivers (MB-OFDM UWB 시스템에서 공간 다중화 MIMO 수신기의 성능 분석)

  • Suh, Jung-Won;Kwon, Yang-Soo;Kim, Seok-Hyeon;Chung, Jea-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.121-129
    • /
    • 2008
  • This paper presents the spatial multiplexing MIMO system to increase data rate to double in MB-OFDM UWB system, which is ECMA standards, and compares BER performance of various receiver structures. The complexity and BER performance of various types of spatial multiplexing receivers are compared and analyzed using diagonal and horizontal encoding techniques for $2{\times}2$\;and\;2{\times}3$ antennas systems. Computer simulations exhibit that $2{\times}2$ MML and $2{\times}3$ ZF method show better BER performance than that of SISO system with simple complexity.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.