• Title/Summary/Keyword: Multiple-cameras

Search Result 229, Processing Time 0.03 seconds

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

A Method for Body Keypoint Localization based on Object Detection using the RGB-D information (RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, in the field of video surveillance, a Deep Learning based learning method has been applied to a method of detecting a moving person in a video and analyzing the behavior of a detected person. The human activity recognition, which is one of the fields this intelligent image analysis technology, detects the object and goes through the process of detecting the body keypoint to recognize the behavior of the detected object. In this paper, we propose a method for Body Keypoint Localization based on Object Detection using RGB-D information. First, the moving object is segmented and detected from the background using color information and depth information generated by the two cameras. The input image generated by rescaling the detected object region using RGB-D information is applied to Convolutional Pose Machines for one person's pose estimation. CPM are used to generate Belief Maps for 14 body parts per person and to detect body keypoints based on Belief Maps. This method provides an accurate region for objects to detect keypoints an can be extended from single Body Keypoint Localization to multiple Body Keypoint Localization through the integration of individual Body Keypoint Localization. In the future, it is possible to generate a model for human pose estimation using the detected keypoints and contribute to the field of human activity recognition.

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.

A study on lighting angle for improvement of 360 degree video quality in metaverse (메타버스에서 360° 영상 품질향상을 위한 조명기 투사각연구)

  • Kim, Joon Ho;An, Kyong Sok;Choi, Seong Jhin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.499-505
    • /
    • 2022
  • Recently, the metaverse has been receiving a lot of attention. Metaverse means a virtual space, and various events can be held in this space. In particular, 360-degree video, a format optimized for the metaverse space, is attracting attention. A 360-degree video image is created by stitching images taken with multiple cameras or lenses in all 360-degree directions. When shooting a 360-degree video, a variety of shooting equipment, including a shooting staff to take a picture of a subject in front of the camera, is displayed on the video. Therefore, when shooting a 360-degree video, you have to hide everything except the subject around the camera. There are several problems with this shooting method. Among them, lighting is the biggest problem. This is because it is very difficult to install a fixture that focuses on the subject from behind the camera as in conventional image shooting. This study is an experimental study to find the optimal angle for 360-degree images by adjusting the angle of indoor lighting. We propose a method to record 360-degree video without installing additional lighting. Based on the results of this study, it is expected that experiments will be conducted through more various shooting angles in the future, and furthermore, it is expected that it will be helpful when using 360-degree images in the metaverse space.

DB-Based Feature Matching and RANSAC-Based Multiplane Method for Obstacle Detection System in AR

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.49-55
    • /
    • 2022
  • In this paper, we propose an obstacle detection method that can operate robustly even in external environmental factors such as weather. In particular, we propose an obstacle detection system that can accurately inform dangerous situations in AR through DB-based feature matching and RANSAC-based multiplane method. Since the approach to detecting obstacles based on images obtained by RGB cameras relies on images, the feature detection according to lighting is inaccurate, and it becomes difficult to detect obstacles because they are affected by lighting, natural light, or weather. In addition, it causes a large error in detecting obstacles on a number of planes generated due to complex terrain. To alleviate this problem, this paper efficiently and accurately detects obstacles regardless of lighting through DB-based feature matching. In addition, a criterion for classifying feature points is newly calculated by normalizing multiple planes to a single plane through RANSAC. As a result, the proposed method can efficiently detect obstacles regardless of lighting, natural light, and weather, and it is expected that it can be used to secure user safety because it can reliably detect surfaces in high and low or other terrains. In the proposed method, most of the experimental results on mobile devices reliably recognized indoor/outdoor obstacles.

Calibration of Thermal Camera with Enhanced Image (개선된 화질의 영상을 이용한 열화상 카메라 캘리브레이션)

  • Kim, Ju O;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.621-628
    • /
    • 2021
  • This paper proposes a method to calibrate a thermal camera with three different perspectives. In particular, the intrinsic parameters of the camera and re-projection errors were provided to quantify the accuracy of the calibration result. Three lenses of the camera capture the same image, but they are not overlapped, and the image resolution is worse than the one captured by the RGB camera. In computer vision, camera calibration is one of the most important and fundamental tasks to calculate the distance between camera (s) and a target object or the three-dimensional (3D) coordinates of a point in a 3D object. Once calibration is complete, the intrinsic and the extrinsic parameters of the camera(s) are provided. The intrinsic parameters are composed of the focal length, skewness factor, and principal points, and the extrinsic parameters are composed of the relative rotation and translation of the camera(s). This study estimated the intrinsic parameters of thermal cameras that have three lenses of different perspectives. In particular, image enhancement based on a deep learning algorithm was carried out to improve the quality of the calibration results. Experimental results are provided to substantiate the proposed method.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.27-35
    • /
    • 2023
  • In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.

Development of a Multi-Camera Inline System using Machine Vision System for Quality Inspection of Pharmaceutical Containers (의약 용기의 품질 검사를 위한 머신비전을 적용한 다중 카메라 인라인 검사 시스템 개발)

  • Tae-Yoon Lee;Seok-Moon Yoon;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.469-473
    • /
    • 2024
  • In this paper proposes a study on the development of a multi-camera inline inspection system using machine vision for quality inspection of pharmaceutical containers. The proposed technique captures the pharmaceutical containers from multiple angles using several cameras, allowing for more accurate quality assessment. Based on the captured data, the system inspects the dimensions and defects of the containers and, upon detecting defects, notifies the user and automatically removes the defective containers, thereby enhancing inspection efficiency. The development of the multi-camera inline inspection system using machine vision is divided into four stages. First, the design and production of a control unit that fixes or rotates the containers via suction. Second, the design and production of the main system body that moves, captures, and ejects defective products. Third, the design and development of control logic for the embedded board that controls the entire system. Finally, the design and development of a user interface (GUI) that detects defects in the pharmaceutical containers using image processing of the captured images. The system's performance was evaluated through experiments conducted by a certified testing agency. The results showed that the dimensional measurement error range of the pharmaceutical containers was between -0.30 to 0.28 mm (outer diameter) and -0.11 to 0.57 mm (overall length), which is superior to the global standard of 1 mm. The system's operational stability was measured at 100%, demonstrating its reliability. Therefore, the efficacy of the proposed multi-camera inline inspection system using machine vision for the quality inspection of pharmaceutical containers has been validated.

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.