• Title/Summary/Keyword: Multiple vehicle tracking

Search Result 71, Processing Time 0.028 seconds

Development of Target Signal Simulator for Multi-Beam Type FMCW Radar (다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발)

  • Lee, Seung-Youn;Choe, Tok-Son;Jung, Young-Hun;Lee, Seok-Jae;Yoon, Joo-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

Multiple Vehicle Tracking Algorithm Using Kalman Filters (칼만 필터를 이용한 다중 차량 추적 알고리즘)

  • 이철헌;김형태;설성욱;남기곤;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문에서는 빠른 수행 속도를 가지고 여러 대의 차량을 동시에 추적할 수 있는 다중 차량 추적 알고리즘을 제안한다. 이러한 작업은 연속 영상으로부터 움직이는 물체의 동작 정보를 구하는 동작 분할(motion segmentation)단계와 칼만 필터(Kalman filter)를 이용해서 물체의 위치를 예측하는 동작 예측(motion estimation)단계로 나누어진다. 제안된 알고리즘은 아핀 동작 모델(Affine motion model)을 적용하여 동작 정보를 근사화함으로써 두 개의 선형 칼만 필터를 사용하고, 칼만 필터에서 예측된 위치 정보를 동작 분할 과정에 사용하여 빠른 추적이 이루어지도록 하였다. 또한, 다중 물체 추적 시 중요한 데이터 연결 문제(data association problem)를 해결하기 위해서 패턴 인식 방법을 도입하였다. 제안된 알고리즘을 고속 도로 영상에 대해 적용했을 때, 빠르고 정확한 다중 차량 추적이 이루어짐을 실험 결과를 통해 보였다.

  • PDF

Multiple Vehicle Tracking System Using Stereo Vision (스테레오 비전을 이용한 다중 차량 추적 시스템)

  • Lim, Young-Chul;Kim, Dongyoung;Lee, Chung-Hee
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1321-1323
    • /
    • 2013
  • 지능형 자동차에서 영상 기반 능동 안전시스템의 신뢰성을 확보하기 위해서는 도로 위의 다양한 객체를 강건하게 검출하고, 추적하는 것이 가장 중요하다. 본 논문에서는 다중 가설 기반 추적 프레임워크를 이용하여, 실시간으로 전방 차량을 검출하고 추적하는 시스템을 제안한다. 제안한 시스템은 다양한 외부 도로 환경에서 획득된 실험 영상에 대하여 10-15Hz 의 처리 속도로, 평균적으로 98%의 인식률을 제공할 수 있다.

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

Development of Adaptive Ground Control System for Multi-UAV Operation and Operator Overload Analysis (복수 무인기 운용을 위한 적응형 지상체 개발 및 운용자 과부하 분석)

  • Oh, Jangjin;Choi, Seong-Hwan;Lim, Hyung-Jin;Kim, Seungkeun;Yang, Ji Hyun;Kim, Byoung Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.529-536
    • /
    • 2017
  • The general ground control system has control and information display functions for the operation of a single unmanned aerial vehicle. Recently, the function of the single ground control system extends to the operation of multiple UAVs. As a result, operators have been exposed to more diverse tasks and are subject to task overload due to various factors during their mission. This study proposes an adaptive ground control system that reflects the operator's condition through the task overload measurement of multiple UAV operators. For this, the ground control software is developed to control multiple UAVs at the same time, and the simulator with six degree-of-freedom aircraft dynamics is constructed for realistic human-machine-interface experiments by the operators.

A Study on the Development of App Ecosystem based Smart Home

  • Moon, Junsik;Park, Chan Young
    • Architectural research
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • Smart Home has achieved remarkable developments over the past few decades. In the ICT(Information and Communications Technology) field, 'app ecosystem'-a collection of multiple devices such as mobile phones and tablets, software (operating system and development tools), companies (manufacturers, carriers, app-stores, etc.) and the process through which data is transferred/shared by a user from one device to another device or by the device itself-has come into wide use since the advent of the smart phone. Due to the synergy effect of the 'app ecosystem', it has been applied to various fields such as televisions and automobile industries. As a result, both the Smart TV and connected vehicle have developed their own ecosystem. Although much research has been conducted on these two ecosystems, there is a lack of research regarding 'App Ecosystem based Smart Home' (AESH). This research focuses on the building scenarios based on 'Tracking, Analyzing, Imaging, Deciding, and Acting (T.A.I.D.A), a future prediction method process. Rather than taking an approach from the perspective of providing and applying advanced technology for research on building future scenarios, this paper focuses on research from the perspective of architectural planning. As a result, two future scenarios of AESH are suggested.

Gesture based Natural User Interface for e-Training

  • Lim, C.J.;Lee, Nam-Hee;Jeong, Yun-Guen;Heo, Seung-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.577-583
    • /
    • 2012
  • Objective: This paper describes the process and results related to the development of gesture recognition-based natural user interface(NUI) for vehicle maintenance e-Training system. Background: E-Training refers to education training that acquires and improves the necessary capabilities to perform tasks by using information and communication technology(simulation, 3D virtual reality, and augmented reality), device(PC, tablet, smartphone, and HMD), and environment(wired/wireless internet and cloud computing). Method: Palm movement from depth camera is used as a pointing device, where finger movement is extracted by using OpenCV library as a selection protocol. Results: The proposed NUI allows trainees to control objects, such as cars and engines, on a large screen through gesture recognition. In addition, it includes the learning environment to understand the procedure of either assemble or disassemble certain parts. Conclusion: Future works are related to the implementation of gesture recognition technology for a multiple number of trainees. Application: The results of this interface can be applied not only in e-Training system, but also in other systems, such as digital signage, tangible game, controlling 3D contents, etc.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.