Genetic parameters for linear type and composite traits were estimated by using Bayesian inference via Gibbs sampling with a multiple threshold animal model in Holstein cows. Fifteen linear type traits and 5 composite traits were included to estimate genetic variance and covariance components in the model. In this study, 30,204 records were obtained in the cows from 305 sires. Heritability estimates for linear type traits had the estimates as high as 0.28~0.64. Heritability estimates for composite traits were also high, when the traits were assumed to be categorical traits. Final score was more correlated with the composite traits than with the linear type traits.
Genetic parameters for growth-related traits were estimated in 9-month old of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, using multiple traits of animal model. The data were collected from the records of 3,504 individuals produced from 16 sires and 17 dams in H. discus hannai and 821 individuals produced from 3 sires and 4 dams in H. discus discus, which was evaluated at the Bukjeju branch, NFRDI, from May 20, 2004 to February 14, 2005. The heritability estimates obtained from restricted maximum likelihood (REML) method range from 0.29 to 0.31 for three growth traits (shell length, shell width and body weight) in H. discus hannai and from 0.22 to 0.28 in H. discus discus, respectively. The heritabilities for shell shape and condition factor were lower than others of growth traits such as ranging from 0.03 to 0.24 in H. discus hannai and from 0.06 to 0.11 in H. discus discus, respectively. Genetic and phenotypic correlations were >0.91 between shell parameters and weight in two abalone subspecies, respectively, indicating that breeding for weight gains could be successfully achieved by selecting for shell length.
Rodrigues, Francelino Neiva;Sarmento, Jose Lindenberg Rocha;Leal, Tania Maria;de Araujo, Adriana Mello;Filho, Luiz Antonio Silva Figueiredo
Animal Bioscience
/
제34권2호
/
pp.185-191
/
2021
Objective: The objective of this study was to estimate the genetic parameters for worm resistance (WR) and associated characteristics, using the linear-threshold animal model via Bayesian inference in single- and multiple-trait analyses. Methods: Data were collected from a herd of Santa Inês breed sheep. All information was collected with animals submitted to natural contamination conditions. All data (number of eggs per gram of feces [FEC], Famacha score [FS], body condition score [BCS], and hematocrit [HCT]) were collected on the same day. The animals were weighed individually on the day after collection (after 12-h fasting). The WR trait was defined by the multivariate cluster analysis, using the FEC, HCT, BCS, and FS of material collected from naturally infected sheep of the Santa Inês breed. The variance components and genetic parameters for the WR, FEC, HCT, BCS, and FS traits were estimated using the Bayesian inference under the linear and threshold animal model. Results: A low magnitude was obtained for repeatability of worm-related traits. The mean values estimated for heritability were of low-to-high (0.05 to 0.88) magnitude. The FEC, HCT, BCS, FS, and body weight traits showed higher heritability (although low magnitude) in the multiple-trait model due to increased information about traits. All WR characters showed a significant genetic correlation, and heritability estimates ranged from low (0.44; single-trait model) to high (0.88; multiple-trait model). Conclusion: Therefore, we suggest that FS be included as a criterion of ovine genetic selection for endoparasite resistance using the trait defined by multivariate cluster analysis, as it will provide greater genetic gains when compared to any single trait. In addition, its measurement is easy and inexpensive, exhibiting greater heritability and repeatability and a high genetic correlation with the trait of resistance to worms.
The aim of this study was to evaluate the genetic parameters of growth traits for improvement breeding in olive flounder Paralichthys olivaceus at the 8th generation of selective breeding in April 2021. Growth traits such as total length, body weight and condition factor at 11 months of age were measured for 7,508 individuals with confirmed paternity. Data were analyzed using the restricted maximum likelihood method applied to a multiple traits animal model. The effects of sex and family were significantly different across traits (P<0.05). The heritability values of total length, body weight and condition factor were estimated to be high as 0.479, 0.457, and 0.466, respectively. Correlation analysis between phenotypic and breeding values, indicated that the selection accuracy was 75.9-85.2% for all traits. To increase the selection accuracy for parent fish selection, the sex and pedigree characteristics that affect each trait should be considered. Moreover, further improvement of multiple traits can be achieved if the correlation between each trait is appropriately considered.
Udomsak Noppibool;Thanathip Suwanasopee;Mauricio A. Elzo;Skorn Koonawootrittriron
Animal Bioscience
/
제36권12호
/
pp.1785-1795
/
2023
Objective: This study was to estimate heritabilities, additive genetic correlations, and phenotypic correlations between number of piglets born alive (NBA), litter birth weight (LTBW), number of piglets weaned (NPW) and litter weaning weight (LTWW) in different parities of Landrace (L), Yorkshire (Y), Landrace×Yorkshire (LY), and Yorkshire×Landrace (YL) sows in a commercial swine operation in Northern Thailand. Methods: Two models were utilized, a single trait repeatability model (RM) and a multiple trait animal model (MTM). The RM assumed reproductive records from different parities to be repeated values of the same trait, whereas the MTM assumed these records to be different traits. The two models accounted for the fixed effects of farrowing year-season, genetic group of the sow, heterosis, and age at first farrowing, and the random effects of sow, boar, and residual. Results: Heritability estimates from RM were 0.02±0.01 for NBA, 0.10±0.01 for LTBW, 0.04±0.01 for NPW, and 0.11±0.01 for LTWW. Heritability estimates from MTM fluctuated across parities, ranging from 0.04±0.01 in parity 2 to 0.09±0.02 in parity 4 for NBA, 0.07±0.02 in parity 2 to 0.16±0.02 in parity 3 for LTBW, 0.04±0.02 in parity 4 to 0.08±0.01 in parity 1 for NPW, and 0.16±0.02 in parity 1 to 0.20±0.02 in parity 2 for LTWW. Additive genetic correlation estimates from MTM were also variable, ranging from 0.29±0.24 between NBA in parity 1 and NBA in parity 2 to 0.99±0.05 between LTWW in parity 3 and LTWW in parity 4. Conclusion: The findings of this study highlight the advantage of using MTM for the genetic improvement of reproductive traits in swine and contribute to the development of sustainable swine breeding programs in Thailand.
First lactation records of 683 Murrah buffaloes maintained at NDRI, Karnal which were progeny of 84 sires used for comparing the heritability estimates of age at first calving, first lactation milk yield and first service period under single and multiple trait models using restricted maximum likelihood (REML) method of estimation under an individual animal model. The results indicated that the heritability estimates may vary under single and multiple trait models depending upon the magnitude of genetic and environmental correlation among the traits being considered. Therefore, a single or multiple trait model is recommended for estimation of variance components depending upon the goal of breeding programme. However, there may not be any advantage of considering a trait with zero or near zero heritability and having no or very low genetic correlation with other traits in the model. Lower heritability estimates of part lactation yield (120-day milk yield) implied that there may not be any advantage of considering this trait in place of actual 305-day milk yield, whereas, comparable heritability estimates of predicted 305-day milk yield suggested that it could be used for sire evaluation to reduce the cost of milk recording under field conditions.
Objective: The objective of this study was to estimate the genetic parameters and trends for milk, fat, and protein yields in the first three lactations of Thai dairy cattle using a 3-trait,-3-lactation random regression test-day model. Methods: Data included 168,996, 63,388, and 27,145 test-day records from the first, second, and third lactations, respectively. Records were from 19,068 cows calving from 1993 to 2013 in 124 herds. (Co) variance components were estimated by Bayesian methods. Gibbs sampling was used to obtain posterior distributions. The model included herd-year-month of testing, breed group-season of calving-month in tested milk group, linear and quadratic age at calving as fixed effects, and random regression coefficients for additive genetic and permanent environmental effects, which were defined as modified constant, linear, quadratic, cubic and quartic Legendre coefficients. Results: Average daily heritabilities ranged from 0.36 to 0.48 for milk, 0.33 to 0.44 for fat and 0.37 to 0.48 for protein yields; they were higher in the third lactation for all traits. Heritabilities of test-day milk and protein yields for selected days in milk were higher in the middle than at the beginning or end of lactation, whereas those for test-day fat yields were high at the beginning and end of lactation. Genetics correlations (305-d yield) among production yields within lactations (0.44 to 0.69) were higher than those across lactations (0.36 to 0.68). The largest genetic correlation was observed between the first and second lactation. The genetic trends of 305-d milk, fat and protein yields were 230 to 250, 25 to 29, and 30 to 35 kg per year, respectively. Conclusion: A random regression model seems to be a flexible and reliable procedure for the genetic evaluation of production yields. It can be used to perform breeding value estimation for national genetic evaluation in the Thai dairy cattle population.
Kim, Jong-Bok;Kim, Dae-Jung;Lee, Jeong-Koo;Lee, Chae-Young
Asian-Australasian Journal of Animal Sciences
/
제23권7호
/
pp.848-854
/
2010
The objectives of this study were to estimate genetic parameters for the carcass price and carcass traits contributing to carcass grading and to investigate the influence of each carcass trait on the carcass price using multiple regression and path analyses. Data for carcass traits and carcass prices were collected from March 2003 to January 2009 on steers of Korean cattle raised at private farms. The analytical mixed animal model, including slaughter house-year-month combination, linear and quadratic slaughter age as fixed effects and random animal and residual effects, was used to estimate genetic parameters. The effects of carcass traits on the carcass price were evaluated by applying multiple regression analyses. Heritability estimates of carcass traits were $0.20{\pm}0.08$ for carcass weight (CWT), $0.33{\pm}0.10$ for back fat thickness (BFT), $0.07{\pm}0.05$ for eye-muscle area (EMA) and $0.25{\pm}0.10$ for marbling score (MS), and those of carcass prices were $0.21{\pm}0.10$ for auction price per 1 kg of carcass weight (AP) and $0.13{\pm}0.07$ for total price (CP). Genetic correlation coefficients of AP with CWT and MS were $-0.35{\pm}0.29$ and $0.99{\pm}0.04$, respectively, and those of CP with CWT and MS were $0.59{\pm}0.22$ and $0.39{\pm}0.29$ respectively. If an appropriate adjustment for temporal economic value is available, the moderate heritability estimates of AP and CP might suggest their potential use as the breeding objectives for improving the gross incomes of beef cattle farms. The large genetic correlation estimates of carcass price variables with CWT and MS implied that simultaneous selection for both CWT and MS would be also useful in enhancing income.
The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.
A genome wide association study was conducted using estimated breeding value (EBV) for milk production traits from 1st to 4th lactation. Significant single nucleotide polymorphism (SNP) markers were selected for each trait and the differences were compared by lactation. DNA samples were taken from 456 animals with EBV which are Holstein proven bulls whose semen is being sold or the daughters of old proven bulls whose semen is no longer being sold in Korea. High density genome wide SNP genotype was investigated and the significance of markers associated with traits was tested using the breeding value estimated by a multiple lactation model as a dependent variant. As the result of significance comparisons by lactations, several differences were found between the first lactation and subsequent lactations (from second to 4th lactation). A similar trend was noted in mean deviation and correlation of the estimated effects by lactation. Since there was a difference in the genes associated with EBV for each trait between first and subsequent lactations, a multi-lactation model in which lactation is considered as a different trait is genetically useful. Also, significant markers in all lactations and common markers for different traits were detected, which can be used as markers for quantitative trait loci exploration and marker assisted selection in milk production traits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.