• Title/Summary/Keyword: Multiple sensor signals

Search Result 107, Processing Time 0.026 seconds

Performance Measurement of Single-board System for Mobile BCI System (이동식 BCI 시스템을 위한 싱글보드 시스템의 성능측정)

  • Lee, Hyo Jong;Kim, Hyun Kyu;Gao, Yongbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.136-144
    • /
    • 2015
  • The EEG system can be classified as a wired or wireless device. Each device used for the medical or entertainment purposes. The collected EEG signals from sensor are analyzed using feature extractions. A wireless EEG system provides good portability and convenience, however, it requires a mobile system that has heavy computing power. In this paper a single board system is proposed to handle EEG signal processing for BCI applications. Unfortunately, the computing power of a single board system is limited unlike general desktop systems. Thus, parallel approach using multiple single board systems is investigated. The parallel EEG signal processing system that we built demonstrates superlinear speedup for an EEG signal processing algorithm.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

Experimental Implementation of a Cableless Seismic Data Acquisition Module Using Arduino (아두이노를 활용한 무선 탄성파 자료취득 모듈 구현 실험)

  • Chanil Kim;Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.103-113
    • /
    • 2023
  • In the oil and gas exploration market, various cableless seismic systems have been developed as an alternative to improve data acquisition efficiency. However, developing such equipment at a small scale for academic research is not available owing to highly priced commercial products. Fortunately, building and experimenting with open-source hardware enable the academic utilization of cableless seismic equipment with relatively low cost. This study aims to develop a cableless seismic acquisition module using Arduino. A cableless seismic system requires the combination of signal sensing, simple pre-processing, and data storage in a single device. A conventional geophone is used as the sensor that detects the seismic wave signal. In addition, it is connected to an Arduino circuit that plays a role in implementing the processing and storing module for the detected signals. Three main functions are implemented in the Arduino module: preprocessing, A/D conversion, and data storage. The developed single-channel module can acquire a common receiver gather from multiple source experiments.

Functional Mechanism of Calmodulin for Cellular Responses in Plants (식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2009
  • Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

Analysis of the PTO Torque of a Transplanter by Planting Condition

  • Kim, Wan Soo;Chung, Sun Ok;Choi, Chang Hyun;Cho, Jong Seung;Choi, Dug Soon;Kim, Young Joo;Lee, Sang Dae;Hong, Soon Jung;Kim, Yong Joo;Koo, Seung Mo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.313-318
    • /
    • 2016
  • Purpose: This study measured and analyzed the PTO (power take off) torque of a transplanter according to the planting conditions during field operation. Methods: A torque measurement system was constructed with torque sensors to measure the torque of a PTO shaft, a measurement device to acquire sensor signals, and a power controller to provide power for a laptop computer. The field operation was conducted at four planting distances (26, 35, 43, and 80 cm) and two planting depths using the transplanter on a field with similar soil conditions. One-way ANOVA with planting distance and Duncan's multiple range test at a significance level of 0.05 were used to analyze the PTO torque. The torque ratio was calculated based on the minimum torque using the average PTO torque measured under each planting condition. Results: The average torques on the PTO shaft for planting distances of 26, 35, 43, and 80 cm at a low planting depth were 11.05, 9.07, 7.04, and 3.75 Nm, respectively; the same for planting distances of 26, 35, 43, and 80 cm at a middle planting depth were 12.20, 9.86, 7.94, and 4.32 Nm, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at a low planting depth increased by 88, 142, and 195%, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at the middle planting depth increased by 84, 128, and 182%, respectively. Conclusions: PTO torque fluctuated by planting distance and depth. Moreover, the PTO torque increased for short planting distances. Therefore, farmers should determine the planting conditions of the transplanter by considering the load and durability of the machine. The results of this study provide useful information pertaining to the optimum PTO design of the transplanter considering the field load.

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.