• Title/Summary/Keyword: Multiple salient objects detection

Search Result 2, Processing Time 0.015 seconds

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

Salient Object Detection via Multiple Random Walks

  • Zhai, Jiyou;Zhou, Jingbo;Ren, Yongfeng;Wang, Zhijian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1712-1731
    • /
    • 2016
  • In this paper, we propose a novel saliency detection framework via multiple random walks (MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two agents, which represent the seeds of background and foreground, traverse the graph according to a transition matrix, and interact with each other to achieve a state of equilibrium. The proposed algorithm is divided into three steps. First, an initial segmentation is performed to partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. Based on the regions of image, we construct a graph that the nodes correspond to the superpixels in the image, and the edges between neighboring nodes represent the similarities of the corresponding superpixels. Second, to generate the seeds of background, we first filter out one of the four boundaries that most unlikely belong to the background. The superpixels on each of the three remaining sides of the image will be labeled as the seeds of background. To generate the seeds of foreground, we utilize the center prior that foreground objects tend to appear near the image center. In last step, the seeds of foreground and background are treated as two different agents in multiple random walkers to complete the process of salient object detection. Experimental results on three benchmark databases demonstrate the proposed method performs well when it against the state-of-the-art methods in terms of accuracy and robustness.