• Title/Summary/Keyword: Multiple response optimization

Search Result 160, Processing Time 0.027 seconds

Novel Design of Flux Barrier in IPM type BLDC motor by considering the Multi-response Taguchi Method (다특성 목적함수를 고려한 영구자석 매입형 전동기의 새로운 자속장벽 최적설계)

  • Park, Hyun-Kag;Yang, Byoung-Yull;Rhee, Sang-Bong;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.498-505
    • /
    • 2007
  • This paper proposes the novel flux barrier that built in q-axis in rotor of IPM type BLDC motor. The novel flux barrier aims to reduce the motor vibration with reduced cogging torque and lessened torque ripple by the sinusoidal waveform distribution of the flux generated in the permanent magnet. For optimization of the novel flux barrier, the Taguchi method is effectively employed which considered multiple objective quality characteristics, such as cogging torque, average torque and efficiency. The result of proposed model compare with the initial model and it is verified by 2D finite element method (FEM) results.

A study on the application of S model automata for multiple objective optimal operation of Power systems (다목적 전력 시스템 최적운용을 위한 S 모델 Automata의 적용 연구)

  • Lee, Yong-Seon;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1279-1281
    • /
    • 1999
  • The learning automaton is an automaton to update systematically the strategy for enhancing the performance in response to the output results, and several schemes of learning automata have been presented. In this paper, S-model learning automata are applied to achieving a best compromise solution between an optimal solution for economic operation and an optimal solution for stable operation of the power system under the circumstance that the loads vary randomly. It is shown that learning automata are applied satisfactorily to the multiobjective optimization problem for obtaining the best tradeoff among the conflicting economy and stability objectives of power systems.

  • PDF

Approximate Multi-Objective Optimization of Stiffener of Steel Structure Considering Strength Design Conditions (강도조건을 고려한 강구조물 보강재의 다목적 근사최적설계)

  • Jeon, Eungi;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.192-197
    • /
    • 2015
  • In many fields, the importance of reducing weight is increasing. A product should be designed such that it is profitable, by lowering costs and exhibiting better performance than other similar products. In this study, the mass and deflection of steel structures have to be reduced as objective functions under constraint conditions. To reduce computational analysis time, central composite design(CCD) and D-Optimal are used in design of experiments(DOE). The accuracy of approximate models is evaluated using the $R^2$ value. In this study, the objective functions are multiple, so the non-dominant sorting genetic algorithm(NSGA-II), which is highly efficient, is used for such a problem. In order to verify the validity of Pareto solutions, CAE results and Pareto solutions are compared.

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

Finding Cost-Effective Mixtures Robust to Noise Variables in Mixture-Process Experiments

  • Lim, Yong B.
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.161-168
    • /
    • 2014
  • In mixture experiments with process variables, we consider the case that some of process variables are either uncontrollable or hard to control, which are called noise variables. Given the such mixture experimental data with process variables, first we study how to search for candidate models. Good candidate models are screened by the sequential variables selection method and checking the residual plots for the validity of the model assumption. Two methods, which use numerical optimization methods proposed by Derringer and Suich (1980) and minimization of the weighted expected loss, are proposed to find a cost-effective robust optimal condition in which the performance of the mean as well as the variance of the response for each of the candidate models is well-behaved under the cost restriction of the mixture. The proposed methods are illustrated with the well known fish patties texture example described by Cornell (2002).

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

Application of WAVE Modeling in Combustion performance of SI Engines Using DoE Methodology (실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구)

  • Jeong, Dong-Won;Tsogtjargal, Tsogtjargal;Soyoloo, Soyoloo;Lim, Ock-Taeck
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2922-2927
    • /
    • 2008
  • The test of engine performance using the engine dynamometer needs technical researchers and facilities. A variety of CAE analysis programs and DoE(Design of Experiments) are used to analyze data efficiently instead of tests. The study got data from simulations of WAVE that used to model the SI engine to identify performance of engine. DoE makes it possible to know effectiveness of factors for power, BSFC, volume efficiency and find optimum condition in each factor through minimizing number of experiments. CA50 has effect on power and BSFC as volume efficiency is related with cylinder liner temperature and heat coefficients. The final result in DoE could be identified of consistency above 98% after substituting the data to WAVE.

  • PDF

An Enhanced Searching Algorithm over Unstructured Mobile P2P Overlay Networks

  • Shah, Babar;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.173-178
    • /
    • 2013
  • To discover objects of interest in unstructured peer-to-peer networks, the peers rely on flooding query messages which create incredible network traffic. This article evaluates the performance of an unstructured Gnutella-like protocol over mobile ad-hoc networks and proposes modifications to improve its performance. This paper offers an enhanced mechanism for an unstructured Gnutella-like network with improved peer features to better meet the mobility requirement of ad-hoc networks. The proposed system introduces a novel caching optimization technique and enhanced ultrapeer selection scheme to make communication more efficient between peers and ultrapeers. The paper also describes an enhanced query mechanism for efficient searching by applying multiple walker random walks with a jump and replication technique. According to the simulation results, the proposed system yields better performance than Gnutella, XL-Gnutella, and random walk in terms of the query success rate, query response time, network load, and overhead.

An Adaptive Polling Selection Technique for Ultra-Low Latency Storage Systems (초저지연 저장장치를 위한 적응형 폴링 선택 기법)

  • Chun, Myoungjun;Kim, Yoona;Kim, Jihong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Recently, ultra-low latency flash storage devices such as Z-SSD and Optane SSD were introduced with the significant technological improvement in the storage devices which provide much faster response time than today's other NVMe SSDs. With such ultra-low latency, $10{\mu}s$, storage devices the cost of context switch could be an overhead during interrupt-driven I/O completion process. As an interrupt-driven I/O completion process could bring an interrupt handling overhead, polling or hybrid-polling for the I/O completion is known to perform better. In this paper, we analyze tail latency problem in a polling process caused by process scheduling in data center environment where multiple applications run simultaneously under one system and we introduce our adaptive polling selection technique which dynamically selects efficient processing method between two techniques according to the system's conditions.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.