• 제목/요약/키워드: Multiple regression polynomial

검색결과 47건 처리시간 0.028초

MAU프로펠러 단독특성의 수식표현 (Polynomial Representation for MAU-Propeller Open Water Characteristics)

  • 서정천;이창섭
    • 한국기계연구소 소보
    • /
    • 통권11호
    • /
    • pp.95-101
    • /
    • 1984
  • The MAU-series propellers were designed and tested in japan. This report presents the polynomial coefficients of open water Characteristics for each standard MAU-series propellers, obtained by multiple polynomial regression analysis in terms of pitch-diameter ratio and advance coefficient. The limitation of applicability and the accuracy of the regression polynomial are also discussed.

  • PDF

다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구 (A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis)

  • 채규수
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.1-6
    • /
    • 2019
  • 본 연구에서는 다항식 회귀분석(Polynomial regression analysis) 방법을 이용하여 비선형 특성을 갖는 전자저울의 질량 추정 모델 개발이 이루어 졌다. 전자저울에 사용되는 로드셀의 출력 단자 전압을 기준 질량 추를 사용하여 직접 측정하였고 이 데이터를 이용하여 MS Office 엑셀의 행렬식 계산과 데이터 추세선 분석 기능을 이용하여 다항식 회귀모델을 구하였다. 5kg까지 측정 가능한 로드셀 전자저울을 사용하여 100g단위로 질량을 측정하였고 다항식 회귀분석(Multiple regression analysis) 모델을 구하였으며, 단순(1차), 2차, 3차 다항식 회귀분석에 대한 오차를 구하였다. 각 모델에 대한 회귀 방정식의 적합도 분석을 위해 결정계수(Coefficient of determination)를 제시하여 추정 질량과 측정 데이터와의 상관관계를 나타내었다. 본 연구에서 제안하는 3차 다항식 모델을 이용하여 추정 값의 표준편차가 10g, 결정계수 1.0으로 상당히 정확한 모델을 얻었다. 본 연구에 사용된 선형 회귀 분석 이론을 바탕으로 최근 인공지능 분야에서 많이 사용되고 있는 로지스틱 회귀 분석(Logistic regression analysis)을 활용하여 기상예측, 신약개발, 경제지표 분석 등의 분야에 대한 다양한 연구를 수행할 수 있을 것으로 생각된다.

반응표면법을 이용한 DTF의 석탄 연소 안전성 평가 (Assessment of Coal Combustion Safety of DTF using Response Surface Method)

  • 이의주
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발 (Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy)

  • 박영환;이세헌
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Multiple Constrained Optimal Experimental Design

  • Jahng, Myung-Wook;Kim, Young Il
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.619-627
    • /
    • 2002
  • It is unpractical for the optimal design theory based on the given model and assumption to be applied to the real-world experimentation. Particularly, when the experimenter feels it necessary to consider multiple objectives in experimentation, its modified version of optimality criteria is indeed desired. The constrained optimal design is one of many methods developed in this context. But when the number of constraints exceeds two, there always exists a problem in specifying the lower limit for the efficiencies of the constraints because the “infeasible solution” issue arises very quickly. In this paper, we developed a sequential approach to tackle this problem assuming that all the constraints can be ranked in terms of importance. This approach has been applied to the polynomial regression model.

임신기간 및 자궁저높이를 이용한 신생아 체중 예측 (Prediction of Newborn Birthweight by the Measurement of Fundal Height and Gestational Period)

  • 조문숙;박영숙
    • 모자간호학회지
    • /
    • 제1권
    • /
    • pp.34-44
    • /
    • 1991
  • The purposes of this study were to predict newborn birthweight by use of gestational period and fundal height and to identify growth curve of fundal height according to gestational period and growth curve of newborn birthweight according to fundal height. The subjects for the study were 802 women who delivered the normal newborn babies at Seoul National University Hospital from Sep. 1, 1981 to Aug.31, 1986. The data were collected bit chart review and analyzed nth SPSS program. The results of study were as follows : 1. The multiple regression equation ($R^2$=0.416) used for the prediction of newborn birthweight was y=(newborn birthweight, kg)=-4.421+0.075$x_1$(fundal height, cm)+0.053$x_2$(gestational period, weeks)+0.016$x_3$(abdominal girth, cm)+0.010$x_4$(maternal height, cm) 2. The growth curve of fundal height according to gestational period was obtained by polynomial regression. The regression equation was Y(fundal height, cm)=-36.78+18.58$log_ex$(gestational period, weeks) The growth curve of newborn birth weight according to fundal height was obtained by polynomial regression. The regression equation was Y(newborn birthweight, kg)=-8.09+3.27$log_ex$ (Fundal Height, cm) 3. In the following subgroups no significant difference was found in fundal height : engaged vs. nonengaged presentation, and nulliparous vs. multiparous women.

  • PDF

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화 (Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

Estimation of Genetic Parameters for Body Weight in Chinese Simmental Cattle Using Random Regression Model

  • Yang, R.Q.;Ren, H.Y.;Xu, S.Z.;Pan, Y.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권7호
    • /
    • pp.914-918
    • /
    • 2004
  • The random regression model methodology was applied into the estimation of genetic parameters for body weights in Chinese Simmental cattle to replace the traditional multiple trait models. The variance components were estimated using Gibbs sampling procedure on Bayesion theory. The data were extracted for Chinese Simmental cattle born during 1980 to 2000 from 6 national breeding farms, where records from 3 months to 36 months were only used in this study. A 3 orders Legendre polynomial was defined as the submodel to describe the general law of that body weight changing with months of age in population. The heritabilities of body weights from 3 months to 36 months varied between 0.31 and 0.48, where the heritabilities from 3 months to 12 months slightly decreased with months of age but ones from 13 months to 36 months increased with months of age. Specially, the heritabilities at eighteenth and twenty-fourth month of age were 0.33 and 0.36, respectively, which were slightly greater than 0.30 and 0.31 from multiple trait models. In addition, the genetic and phenotypic correlations between body weights at different month ages were also obtained using regression model.