• Title/Summary/Keyword: Multiple power excitation

Search Result 22, Processing Time 0.025 seconds

Development of digital excitation system in nuclear power plant (원전 발전기 디지털 제어시스템 개발 III)

  • Shin, Man-Su;Lee, Byeong-Gu;Lim, Ick-Heon;Lee, Ju-Hyun;Ryu, Ho-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.237-239
    • /
    • 2006
  • Nowadays the core control systems are made by multiple redundancy strategy. There are analog excitation systems which have been operating during more than twenty years. This project is aim to retrofit nuclear power plants, also improves the reliance, safety, faculty of nuclear generator excitation system.

  • PDF

Experimental Study of Triple Redundancy Static Excitation System for Power Plant (발전소 발전기용 삼중화 정지형 여자시스템에 관한 연구)

  • Baeg, Seung-Yeob;Nam, Jung-Han;Kim, So-Hyung;Kang, Sung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.806-809
    • /
    • 2003
  • Digital controllers have developed rapidly in recent years. This paper describes the synchronized signal generation circuits for control of Multiple Controllers and test results. Also this paper describes configuration and functions of digital excitation system. The digital excitation system is made up of triple redundancy and has control and protection functions.

  • PDF

The Development of Digital Excitation Control System for Diesel Generator of Nuclear Power Plant and Its Application (원자력발전소 디젤발전기 디지털 다중화 여자시스템 개발 및 적용)

  • Lee, Joo-Hyun;Lim, Ik-Hun;Shin, Man-Su;Jeong, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1449-1455
    • /
    • 2010
  • The excitation control system of an emergency diesel generator is classified as a kind of safety-related system. Compared with other control systems in a power plant, this system is required to be more reliable and have better performance. In this paper, the digital multi-redundant excitation system for a diesel generator was proposed. The signal processing system of the proposed system makes high speed signal processing and arithmetic in excitation control possible. The improved soft start algorithm and multiple PI parameters adaptation considering the diesel generator characteristics were implemented in the proposed system. The developed system was applied to a nuclear power plant successfully.

Critical Current Estimation of HTS Magnets by using Field Dependent E-J Relation (전계를 이용한 팬케이크 권선으로 제작되는 마그넷의 임계전류 산정)

  • Kang, Myung-Hun;Koo, Myung-Hwan;Lee, Hee-Joon;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.502-508
    • /
    • 2009
  • The method to determine the operating current of HTS magnets needs to be different from that of LTS magnets. This paper presented estimation of the critical current of pancake windings. The pancake windings can be excited by a single power source or by multiple power sources. Critical currents were determined by using field dependent E-J relation. For the better estimation of the critical current, a new method to define the magnetic field of the HTS wire has been proposed. Calculated critical currents of pancake windings were compared with measured ones of the HTS BSCCO magnet consisting of 10 pancake windings. According to the test results, the estimated critical currents of pancake windings agreed well with that of measured ones. Effects of the single and multiple power source excitation on the critical currents have been also examined.

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

Increment of HTS Magnet's Central Magnetic Field Made of Pancake Windings by Using Separate Sources (여러개의 전원을 이용한 팬케이크 권선으로 구성된 고온초전도 마그넷의 중심자장 증가)

  • Lee, Kwang-Youn;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1577-1583
    • /
    • 2007
  • The development of a magnet for very high magnetic field is usually envisioned with the use of an HTS insert coil. Pancake windings have been commonly used for the insert coil. All pancake windings have been connected in series and excited by a single power source. In that case, it is inevitable to operate some of the pancake windings well below their critical current densities. To increase the central magnetic field of the magnet, this paper proposed a new excitation method of the pancake windings by exciting the pancakes windings independently using multiple power sources. Results of the calculation show proposed method increases the central magnetic field of the magnet which consisted of 8 pancake windings by 17% comparing with excitation by using a single power source.

Characteristics of Pulse Width Modulation(PWM) Excitation of Ultrasonic Elliptical Vibration Cutting Device (초음파 진동절삭기의 펄스폭변조 가진 특성)

  • Loh, Byoung Gook;Kim, Gi Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • To obtain an elliptical trajectory at the cutting edge during elliptical vibration cutting, sinusoidal voltage excitations of two piezoelectric actuators have commonly been used. In this study, PWM excitation, which is relatively simple to generate, was employed and its characteristics were investigated. In experimental and analytical analyses, we found that for PWM excitation, the integer-multiple frequencies of the excitation voltage distorted the shape of the elliptical trajectory, whereas at a duty ratio(DR) of 50%, the distortion of the elliptical trajectory was minimized due to disappearance of the first overtone. When the magnitude of the maximum excitation voltage was maintained at the same level for both PWM and sinusoidal excitation, PWM (DR=50%) excitation produced a greater vibration amplitude than sinusoidal excitation but resulted in more rapid saturation of a high-frequency power amplifier.

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

Structure Vibration Analysis and Active Noise Control of Power Transformer (전력용변압기의 구조진동해석 및 능동소음제어)

  • Jeong, Yun-Mi;Choi, Eun-Ji;Kim, Young-Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1771-1776
    • /
    • 2013
  • Most cases of power transformer failure are caused by physical factors linked to the transient vibrations of multiple 120Hz combinations. In addition, the noise generated in the transformer from this vibration not only directly contributes to the worsening of the work environment but also causes psychological stress, resulting in the worsening of the workers efficiency and of the living environment of the inhabitants around the power plant. Thus, to remedy these problems, the mechanical-excitation forces working on a power transformer were categorized in this study, and the mechanical-damage mechanism was identified through the vibration transfer paths acting on machines or structures. In addition, a study on active noise cancellation in a transformer using the FXLMS algorithm was conducted to develop a system that is capable of multiple-sound/channel control, which resulted in the active noise reduction effect when applied on the field.

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.