• Title/Summary/Keyword: Multiple point load

Search Result 93, Processing Time 0.024 seconds

An Efficient Unified Method to Compute Voltage Collapse Point (전압붕괴 임계점 계산을 위한 효율적 통합법)

  • Nam, Hae-Gon;Kim, Dong-Jun;Song, Chung-Gi;Mun, Yeong-Hwan;Kim, Tae-Gyun;Lee, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.951-957
    • /
    • 1999
  • The saddle node bifurcation (SNB) and the distance voltage instability are valuable information in power system planning and operation. This paper presents a new efficient, robust and unified strategy to compute the SNB by the combined use of the continuation power flow (CPF), Point of Collapse (PoC) method, and the method of a pair of multiple load flow solutions (PMLFS) with Lagrange interpolation utilizing only their advantages: the approximate nose curves and critical loading are determined fast by Lagrange-interpolating two stable and two unstable solutions obtained by using the robust CPF and PMLFS; the exact SNB is computed by the quadratically converging PoC method. The proposed method has been tested on Klos-Kerner 11-bus, New England 30-bus, IEEE 118-bus and KEPCO 791-bus systems. The method is found to be so efficient that computation time for determining the SNB of the KEPCO 791-bus system is 17.82 sec by a notebook PC with 300 MHz Pentium processor.

  • PDF

Correcting the Elastic-modulus Error of Quartz Glass Using Digital Speckle-pattern Interferometry

  • Ziyang Song;Weixian Li;Sijin Wu;Lianxiang Yang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.337-344
    • /
    • 2023
  • Three-point bending is the main method for measuring the elastic modulus of a thin plate. Although various displacement transducers may be used to measure the bending, these are single-point measurements, and it is difficult to eliminate the error caused by eccentric load and shear force. Error-correction models for the elastic modulus of quartz glass using digital speckle interferometry are proposed for eccentric load and shear force. First, the positional misalignment between maximum deflection and load is analyzed, and the error caused by eccentric load is corrected. Then, the additional displacement caused by shear force at different positions of the quartz glass plate is explored. The effect of shear deformation is also corrected, by measuring two points. Since digital speckle interferometry has the advantage of full-field measurement, it can simultaneously obtain deflection data for multiple points to realize error correction. Experimental results are presented to demonstrate that the proposed model can effectively correct the measurement error of the elastic modulus.

Power Sharing Method for a Grid connected Microgrid with Multiple Distributed Generators

  • Nguyen, Khanh-Loc;Won, Dong-Jun;Ahn, Seon-Ju;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.459-467
    • /
    • 2012
  • In this paper, a grid connected microgrid with multiple inverter-based distributed generators (DGs) is considered. DG in FFC mode regulates the microgrid as a controllable load from the utility point of view as long as its output is within the capacity limit. The transition mode causes a change in frequency of microgrid due to the loss of power transferred between main grid and microgrid. Frequency deviation from the nominal value can exceed the limit if the loss of power is large enough. This paper presents a coordinated control method for inverter-based DGs so that the microgrid is always regulated as a constant load from the utility viewpoint during grid connected mode, and the frequency deviation in the transition mode is minimized. DGs can share the load by changing their control modes between UPC and FFC and stabilize microgrid during transition.

A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers (마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구)

  • Kim Jae Hwan;Lee Eui Bae;Kim Yong Sun;Kim Yong Duk;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF

Voltage Stability Analysis of AC/DC Systems (AC/DC 계통의 전압안정도 해석)

  • Nam, Hae-Kon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

Analysis of Voltage Stability Using the Multiple Load Row Calculation Method with Loss Redistribution Algorithm (손실재분배 알고리즘을 이용한 조류다근계산법에 의한 전압 안정도 해석)

  • Ro, Min-Ho;Kim, Keun-Seong;Park, Sun-Jae;Chae, Myoung-Seck;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.743-745
    • /
    • 1996
  • This paper presents an approach for the analysis of static voltage stability in power system. The proposed approach is based on multiple load flow calculation method using the redistribution algorithm of transmission loss, with which more realistic load flow solution can be obtained in the near of voltage collapse point. Some simulation results of the proposed approach show that the accuracy of static voltage stability analysis can be increased.

  • PDF

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.

Improved Direct Method for Calculating the Closest Voltage Collapse Point and Voltage Stability Enhancement by Generation Redispatch (최단 전압붕괴점 계산을 위한 개선된 직접법과 재급전에 의한 전압안정도 향상)

  • Nam, Hae-Kon;Song, Chung-Gi;Kim, Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.958-964
    • /
    • 1999
  • The distance in load parameter space to the closest saddle node bifurcation (CSNB) point provides the worst case power margin to voltage instability and the left eigenvector at CSNB identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents an improved direct method for computing CSNB: the order of nonlinear systems equations is reduced to about twice of the size of load flow equations in contrast to about three-times in Dobson's direct method; the initial guess for the direct method is computed efficiently and robustly by combined use of continuation power flow, a pair of multiple load flow solution with Lagrange interpolation. It is also shown that voltage stability may be enhanced significantly with shift of generations in the direction of the left eigenvector at CSNB.

  • PDF

Dynamic Stability Regions for Arches

  • Park, Kwang-Kyou;Lee, Byoung-Koo;Oh, Sang-Jin;Park, Kyu-Moon;Lee, Tae-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.819-823
    • /
    • 2003
  • The differential equations governing the shape of displacement for the shallow parabolic arch subjected to multiple dynamic point step loads were derived and solved numerically The Runge-Kutta method was used to perform the time integrations. Hinged-hinged end constraint was considered. Based on the Budiansky-Roth criterion, the dynamic critical point step loads were calculated and the dynamic stability regions for such loads were determined by using the data of critical loads obtained in this study.

  • PDF

Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads

  • Gan, Buntara S.;Trinh, Thanh-Huong;Le, Thi-Ha;Nguyen, Dinh-Kien
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.981-995
    • /
    • 2015
  • This paper presents a finite element procedure for dynamic analysis of non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point loads. The material properties are assumed to vary continuously in the longitudinal direction according to a predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional variation into account, is formulated by using exact polynomials derived from the governing differential equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are computed by using the implicit Newmark method. The numerical results show that the dynamic characteristics of the beams are greatly influenced by the number of moving point loads. The effects of the distance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the dynamic responses of the beams are also investigated in detail and highlighted.