• Title/Summary/Keyword: Multiple parallel tubes

Search Result 7, Processing Time 0.019 seconds

Structural Integrity Evaluation of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Park Youn Won
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.327-337
    • /
    • 2004
  • It is commonly required that tubes with defects exceeding $40\%$ of wall thickness in depth should be plugged; however, this criterion is too conservative for some locations and for some types of defects. Many studies have been done with the aim of developing an alternative plugging criteria, and these studies have shown that steam generator tubes with a certain range of axial through-wall cracks could remain in service without any safety or reliability problems. However, these studies have been limited, thus far, to consideration of single cracked tubes, necessitating a study on multiple cracks, which are commonly found. A crack coalescence model applicable to steam generator tubes with two collinear axial through-wall cracks was proposed in the previous study. In this paper, the investigation is extended to the parallel axial cracks spaced in a circumferential direction, because parallel axial cracks are more frequently detected during in-service inspections than collinear axial cracks. Interaction effects between two parallel cracks are evaluated by performing elastic and elastic-plastic finite element analyses.

Optimum Global Failure Prediction Model of Inconel 600 Thin Plate with Two Parallel Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.316-326
    • /
    • 2004
  • The $40\%$ of wall criterion, which is generally used for the plugging of steam generator tubes, is applied only to a single crack. In a previous study, a total number of 9 failure models were proposed to estimate the local failure of the ligament between cracks, and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however known that parallel axial cracks are more frequently detected than collinear axial cracks during an in-service inspection. The objective of this study is to determine the plastic collapse model that can be applied to steam generator tubes containing two parallel axial through-wall cracks. Three previously proposed local failure models were selected as the candidates. Subsequently, the interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed to determine the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a COD base model was selected as an optimum model.

Development of Optimum Global Failure Prediction Model for Steam Generator Tube with Two Parallel Cracks (평행한 두 개의 균열이 존재하는 증기발생기 세관의 최적 광범위파손 예측모델 개발)

  • Moon Seong ln;Chang Yoon Suk;Lee Jin Ho;Song Myung Ho;Choi Young Hwan;Kim Joung Soo;Kim Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.754-761
    • /
    • 2005
  • The 40\% of wall thickness criterion which has been used as a plugging rule of steam generator tubes is applicable only to a single cracked tube. In the previous studies performed by authors, several global failure prediction models were introduced to estimate the failure loads of steam generator tubes containing two adjacent parallel axial through-wall cracks. These models were applied for thin plates with two parallel cracks and the COD base model was selected as the optimum one. The objective of this study is to verify the applicability of the proposed optimum global failure prediction model for real steam generator tubes with two parallel axial through-wall cracks. For the sake of this, a series of plastic collapse tests and finite element analyses have been carried out fur the steam generator tubes with two machined parallel axial through-wall cracks. Thereby, it was proven that the proposed optimum failure prediction model can be used as the best one to estimate the failure load quite well. Also, interaction effects between two adjacent cracks were assessed through additional finite element analyses to investigate the effect on the global failure behavior.

Performance test of flow straightener with multiple parallel tubes (다중병렬관를 이용한 흐름 정류장치의 성능 평가)

  • Seonwoo, Jaebin;Shin, Hongjoon;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.687-697
    • /
    • 2024
  • Providing a uniform velocity distribution at the inlet of the experimental flume through removing eddies, air bubbles, swirling flow and excessive velocity fluctuations as quickly and efficiently as possible is very important for the accurate reproduction and measurement of both flow velocity and phenomenon in the test reach. In this study, the flow straightener (FS) using multiple parallel PC (ploycarbonate) tubes was developed to increase the accuracy of flow measurement by quickly eliminating excessive velocity fluctuations and air bubbles. It was confirmed through a series of hydraulic experiments that FS using PC tubes can reduce the turbulence intensity (TI) by nearly half under all experimental configurations. The FS of PC tubes with a diameter of 20 mm and a length of 0.3 m can reduce the TI by more than 60% and the value can be maintained at about 2.4% that is in common at the inlet cross-section of the experimental flume. When the tube length is 0.3 m, the magnitude of TI decreases linearly as the tube diameter decreases, and it is desirable to keep the tube diameter at 20 mm to provide a definite flow conditioning effect. Small air bubbles formed at high flow conditions are found to grow in size and quickly rise to the free surface at the rising velocity of about 0.24 m/s due to increased buoyancy as they pass through the tubes. The removal function of air bubbles was not sensitive to the diameter and length of the PC tubes.

Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks (두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가)

  • Moon Seong-In;Chang Yoon-Suk;Lee Jin-Ho;Song Myung-Ho;Choi Young-Hwan;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks (두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델)

  • Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Kim, Nak-Cheol;Moon, Seong-In;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

Initial Subcellular Responses of Susceptible and Resistant Soybeans Infected with the Soybean Cyst Nematode

  • Kim, Young Ho;Kim, Kyung Soo;Riggs, Robert D.
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • Initial subcellular responses in susceptible (PI 274420) and resistant (cv. Hartwig) soybeans infected with the soybean cyst nematode (SCN) were examined 2 and 4 days after inoculation (DAI). Subcellular features common to both soybeans at 2 DAI included hypertrophied initial syncytial cells (ISCs) and syncytium-component cells (SCs) with a dense cytoplasm containing proliferated rough and smooth endoplasmic reticulum (RER and SER), a hypertrophied nucleolus, and reduced vacuoles, suggesting that the nematode-infected cells were dedifferentiated. In the resistant soybean, a striking initial subcellular difference from the susceptible soybean was the dilation of the RER, indicating ER dysfunction and leading to cell death. This disturbed nematode feeding, as evidenced by disrupted feeding tubes. In PI 274420, the ISC cytoplasm was depleted, with the exception of ER membranes, at 4 DAI, while the SC cytoplasm was dense with proliferation of starch-containing plastids around multiple nuclei that might be derived from the congregation of nuclei in the neighboring SCs and in part by nuclear division without cytokinesis. In cv. Hartwig, syncytia were necrotized with secondary cell wall thickening outside the plasma membrane and an extremely dense cytoplasm containing a nucleus with an electron-lucent nucleolus, accompanied by the proliferation of closely stacked parallel RER and ribosomes. These results suggest that syncytia develop continuously in PI 274420 to produce and store nutritional substances in SCs, providing for the nematode through ISC until maturation, but in cv. Hartwig, syncytia degenerate early due to excessive metabolism, blocking nematode feeding and cytoplasmic connections with adjacent intact cells.