• 제목/요약/키워드: Multiple missing values

검색결과 52건 처리시간 0.023초

Application of SOLAS to the Multiple Imputation for Missing Data

  • Moon, Sung-Ho;Kim, Hyun-Jeong;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.579-590
    • /
    • 2003
  • When we analyze incomplete data, i.e., data with missing values, we need treatment for the missing values. A common way to deal with this problem is to delete the cases with missing values. Various other methods have been developed. Among them are EM algorithm and regression algorithm which can estimate missing values and impute the missing elements with the estimated values. In this paper, we introduce multiple imputation software SOLAS which generates multiple data sets and imputes with them.

  • PDF

Large tests of independence in incomplete two-way contingency tables using fractional imputation

  • Kang, Shin-Soo;Larsen, Michael D.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.971-984
    • /
    • 2015
  • Imputation procedures fill-in missing values, thereby enabling complete data analyses. Fully efficient fractional imputation (FEFI) and multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Methods have been described for hypothesis testing with multiple imputation. Fractional imputation assigns weights to the observed data to compensate for missing values. The focus of this article is the development of tests of independence using FEFI for partially classified two-way contingency tables. Wald and deviance tests of independence under FEFI are proposed. Simulations are used to compare type I error rates and Power. The partially observed marginal information is useful for estimating the joint distribution of cell probabilities, but it is not useful for testing association. FEFI compares favorably to other methods in simulations.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Application of Multiple Imputation Method in Analyzing Data with Missing Continuous Covariates

  • Ghasemizadeh Tamar, S.;Ganjali, M.
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.659-664
    • /
    • 2008
  • Missing continuous covariates are pervasive in the use of generalized linear models for medical data. Multiple imputation is the most common and easy-to-do method of dealing with missing covariate data. However, there are always serious warnings in using this method. There should be concern to make imputed values more proper. In this paper, proper imputation from posterior predictive distribution is developed for implementing with arbitrary priors. We use empirical distribution of the posterior for approximating the posterior predictive distribution, to sample from it. This method is preferable in comparison with a presented imputation method of us which uses a full model to impute missing values using available software. The proposed methods are implemented on glucocorticoid data.

Identification of Differentially Expressed Genes Using Tests Based on Multiple Imputations

  • Kim, Sang Cheol;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • 제36권1호
    • /
    • pp.23-31
    • /
    • 2017
  • Datasets from DNA microarray experiments, which are in the form of large matrices of expression levels of genes, often have missing values. However, the existing statistical methods including the principle components analysis (PCA) and Hotelling's t-test are not directly applicable for the datasets having missing values due to the fact that they assume the observed dataset is complete in general. Many methods have been proposed in previous literature to impute the missing in the observed data. Troyanskaya et al. [1] study the k-nearest neighbor (kNN) imputation, Kim et al. [2] propose the local least squares (LLS) method and Rubin [3] propose the multiple imputation (MI) for missing values. To identify differentially expressed genes, we propose a new testing procedure when the missing exists in the observed data. The proposed procedure uses the Stouffer's z-scores and combines the test results of individual imputed samples, which are dependent to each other. We numerically show that the proposed test procedure based on MI performs better than the existing test procedures based on single imputation (SI) by comparing their ROC curves. We apply the proposed method to analyzing a public microarray data.

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

마코프 랜덤 필드 하에서 정규혼합모형에 의한 다중 결측값 대체기법: 색조영상 결측 화소값 대체에 응용 (Imputation of Multiple Missing Values by Normal Mixture Model under Markov Random Field: Application to Imputation of Pixel Values of Color Image)

  • 김승구
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.925-936
    • /
    • 2009
  • 자료의 독립성 가청 하에서 EM 알고리즘에 의한 경측치 대체 (imputation of missing values) 기법은 잘 알려져 있다. 그러나 공간자료를 다루는 응용문제에서는 독립성 가정이 확장된 마코프 랜덤 필드 (Markov random field; MRF) 하에서 다루어져야 할 것이다. 이에 본 논문에서는 마코프 랜덤 필드 모형 궁에서 다변량 자료 중에 다중의 결측치의 대체를 위한 EM 알고리즘을 제공한다. 이 기법은 몇 가지 현실척 가정하에서 결국 혼합모형에 의한 대체 기법 임을 보인다. 그리고 제공된 기법으로 3-변량으로 구성된 색조영상(color image)의 결측화소값 대체문제에 적용하여 그 유용성과 문제점을 밝히며, 문제정의 개선방안에 대해 논의한다.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-Ju;Kwak, Min-Jung;Han, In-Goo
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.51-63
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. There are several treatments to deal with the incomplete data problem such as case deletion and single imputation. Those approaches are simple and easy to implement but they may provide biased results. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • 제9권4호
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.