• Title/Summary/Keyword: Multiple failure model

Search Result 192, Processing Time 0.022 seconds

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

Development of the High Reliable Safety PLC for the Nuclear Power Plants (고신뢰도 안전등급 제어기기 개발)

  • Son, Kwang-Seop;Kim, Dong-Hoon;Son, Choul-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.109-119
    • /
    • 2013
  • This paper presents the design of the Safety Programmable Logic Controller (SPLC) used in the Nuclear Power Plants, an analysis of a reliability for the SPLC using a markov model. The architecture of the SPLC is designed to have the multiple modular redundancy composed of the Dual Modular Redundancy(DMR) and the Triple Modular Redundancy(TMR). The operating system of the SPLC is designed to have the non-preemptive state based scheduler and the supervisory task managing the sequential scheduling, timing of tasks, diagnostic and security. The data communication of the SPLC is designed to have the deterministic state based protocol, and is designed to satisfy the effective transmission capacity of 20Mbps. Using Markov model, the reliability of SPLC is analyzed, and assessed. To have the reasonable reliability such as the mean time to failure (MTTF) more than 10,000 hours, the failure rate of each SPLC module should be less than $2{\times}10^{-5}$/hour. When the fault coverage factor (FCF) is increased by 0.1, the MTTF is improved by about 4 months, thus to enhance the MTTF effectively, it is needed that the diagnostic ability of each SPLC module should be strengthened. Also as the result of comparison the SPLC and the existing safety grade PLCs, the reliability and MTTF of SPLC is up to 1.6-times and up to 22,000 hours better than the existing PLCs.

An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time (생존시간과 연관된 유전자 간의 교호작용에 관한 다중차원축소방법의 확장)

  • Oh, Jin Seok;Lee, Seung Yeoun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1057-1067
    • /
    • 2014
  • Many genetic variants have been identified to be associated with complex diseases such as hypertension, diabetes and cancers throughout genome-wide association studies (GWAS). However, there still exist a serious missing heritability problem since the proportion explained by genetic variants from GWAS is very weak less than 10~15%. Gene-gene interaction study may be helpful to explain the missing heritability because most of complex disease mechanisms are involved with more than one single SNP, which include multiple SNPs or gene-gene interactions. This paper focuses on gene-gene interactions with the survival phenotype by extending the multifactor dimensionality reduction (MDR) method to the accelerated failure time (AFT) model. The standardized residual from AFT model is used as a residual score for classifying multiple geno-types into high and low risk groups and algorithm of MDR is implemented. We call this method AFT-MDR and compares the power of AFT-MDR with those of Surv-MDR and Cox-MDR in simulation studies. Also a real data for leukemia Korean patients is analyzed. It was found that the power of AFT-MDR is greater than that of Surv-MDR and is comparable with that of Cox-MDR, but is very sensitive to the censoring fraction.

A GA-based Rule Extraction for Bankruptcy Prediction Modeling (유전자 알고리즘을 활용한 부실예측모형의 구축)

  • Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.

  • PDF

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.

Determination of Quality Cost Policy under Multiple Assignable Causes (다중이상원인하의 경제적 품질비용 정책결정)

  • 김계완;김용필;박지연;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.1
    • /
    • pp.7-16
    • /
    • 2003
  • At present, company has to produce a product that consumer like with a competitive price, a good quality, and a fitting time to supply. Process control and quality control are very important to supply with a product uniformly and inexpensively. Process control is given much weight in the quality control in manufacturing system. Statistical process controls(SPC) that are used in process generally have major impact on manufacturing, product design activities, and process development potentially. Control charts in statistical process control method can be interpreted the data from quality characteristics in production process and discriminated between chance variation and assignable variation in process. In addition, control chart can be used to monitor the process output and detect when changes in the inputs are required to bring the process back to an in-control state. The models that relate the influential inputs to process outputs help determine the nature and magnitude of the adjustments required. In this paper, the characteristic of product quality is monitored by control chart during the machining process and construction of quality control cycle is considered to divide into two types in this case that different assignable causes lead to shifts having different magnitudes. Then we are intended to find a process shift magnitude which has economical quality cost policy and are considered to quality cost functions to find a process shift magnitude. Those costs are categorized into the well-known categories of prevention, appraisal, and internal failure and external failure. This paper ends with numerical examples that demonstrate the usefulness of the model.

Influence of coloring liquids on the shear bond strength between zirconia and veneering ceramic (색소체용액 침투가 지르코니아 및 전장용 세라믹의 전단결합강도에 미치는 영향)

  • Jung, Jong-Hyun;Oh, Gye-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.291-298
    • /
    • 2016
  • Purpose: This study was to evaluate the effect of coloring liquids on the shear bond strength between zirconia and veneering ceramic. Methods: Zirconia(15 mm in diameter, 2.5 mm in thickness; n=40) used in the experiment were divided into 5 groups depending on the coloring liquid. Each specimen were polished using a polishing machine(LaboPol-2, Struers, UK). A cylinder of veneering porcelain(6 mm in diameter, 3 mm in thickness) was fabricated and fired on zirconia surfaces. The shear bond strength was measured using a universal testing machine(Model 4302, Instron, USA). All data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparisons test. After the shear bond test, fracture surfaces were examined by SEM. Results: Colored zirconia showed a higher shear bonding strength than that of uncolored zirconia except for colored zirconia immersed in Zirkonzahn coloring liquid. In particular, colored zirconia immersed in Kuwotech coloring liquid showed the highest shear bond strength. After the shear bond test, mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. Conclusion: Coloring liquid enhanced the shear bond strength zirconia and veneering ceramic than uncolored zirconia.

Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations

  • Kim, Sang-Hyo;Lee, Sang-Woo;Mha, Ho-Seong
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.621-633
    • /
    • 2000
  • Dynamic responses of a bridge system with several simple spans under longitudinal seismic excitations are examined. The bridge system is modeled as the multiple oscillators and each oscillator consists of four degrees-of-freedom system to implement the poundings between the adjacent oscillators and the friction at movable supports. Pounding effects are considered by introducing the impact elements and a bi-linear model is adopted for the friction force. From the parametric studies, the pounding is found to induce complicated seismic responses and to restrain significantly the relative displacements between the adjacent units. The smaller gap size also restricts more strictly the relative displacement. It is found that the relative displacements between the abutment and adjacent pier unit became much larger than the responses between the inner pier units. Consequently, the unseating failure could take a place between the abutment and nearby pier units. It is also found that the relative displacements of an abutment unit to the adjacent pier unit are governed by the pounding at the opposite side abutment.

A Segment-based Minimum Cutset Method for Estimating the Reliability of Water Distribution Systems (상수관망의 신뢰도 산정을 위한 Segment 기반의 Minimum Cutset 방법)

  • Jun, Hwan-Don;Park, Jae-Il;Baek, Chun-Woo;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.735-742
    • /
    • 2007
  • In this study, a methodology which is based on segments and minimum outsets to estimate the reliability of a real water distribution system efficiently and accurately is suggested. The current reliability assessment models based on minimum cutset consider a pipe as only area impacted by a pipe failure which incurs underestimation of pipe failure impact. In contrary, the suggested methodology adopts "segment" and "unintended isolation" with the hydraulic pressure failure area to define the actual service interruption area in a water distribution system due to a pipe failure, which is different from the Previous reliability estimating methodologies. In addition, a minimum cutset is defined as a single segment incurring abnormal operating conditions and the success mode approach is used to account for the probability of multiple failure combinations of minimum outsets. The model considers numbers and locations of on-off valves when the service interruption area is defined. Once the methodology is applied to a real water distribution system, it is possible to define actual service interruption areas and using the defined areas, the reliability of the water distribution system is estimated reliably, compared with the previous reliability assessment methodologies.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.