• Title/Summary/Keyword: Multiple enzymes

Search Result 168, Processing Time 0.022 seconds

Investigation of the Antioxidant Status in Multiple Myeloma Patients: Effects of Therapy

  • Mehdi, Wesen A.;Zainulabdeen, Jwan A.;Mehde, Atheer A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3663-3667
    • /
    • 2013
  • Background: Multiple myeloma is a malignant silent incurable plasma cell disorder. The present study aimed to assessed the activation of the oxidative stress pathway in afected patients Materials and Methods: Advanced oxidation protein products (AOPPs), malondialdehyde (MDA), adenosine deaminase (ADA), total antioxidant capacity (TAC) levels, glutathione, ascorbic acid (vitamin C), ${\alpha}$-tocopherol (vitamin E) in addition to related enzymes glutathione peroxidase (GSH-Px), glutathione reductase (GSH-R) and superoxide dismutase (SOD) were analyzed in sixty patients with multiple myeloma before and after one month treatment with induction therapy. Results: The results of the study showed a significant elevation in AOPPs, MDA, ADA levels in patients with multiple myeloma before and after treatment in comparison to healthy control samples In contrast TAC glutathione, vitamin C and E, and the antioxidant enzymes levels were decreased significantly. On comparing samples of MM patients after treatment, there was significant increase of TAC glutathione, vitamin C and E, and the antioxidant enzymes in parallel with decreasing AOPPs, MDA and ADA levels in comparison with samples of patients before treatment. Conclusions: The results indicate oxidative stress and DNA damage activity increase in MM and are alleviated in response to therapy.

Multiple Forms of Serine-type Carboxypeptidase Produced by Absidia zychae (Absidia zychae가 생산하는 Serine-type Carboxypeptidase의 다양성)

  • 이병로;안병용
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.405-408
    • /
    • 1993
  • Absidia zychae NRIC 1199 produced two forms of carboxypeptidase(CPZ-1 and CPZ-2) which were distinguished in their isoelectric points but had almost identical properties(1). The amino acid sequences for the N-terminal of both enzymes were the same (Tyr-Thr-Ser-Pro-Lys-Leu-Xaa-Asp-Pro-Asp-Val) and any significant difference was not observed between amino acid compositions of the two enzymes. The ouchterlony double diffusion technique using antibody raised against the CPZ-2 protein demonstrated a good cross-reaction between CPZ-1 and CPZ-2 Genomic Southern analysis showed only one gene encoding CPZ in the genome of Absidia zychae. However, a significant difference between two enzymes was observed on peptide map using Staphylococcus aureus V8 protease, distinguishable only one band, indicating that multiple forms of CPZ are caused by post-translational modification, such as deamidation.

  • PDF

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Fungal Metabolism of Environmentally Persistent Compounds: Substrate Recognition and Metabolic Response

  • Wariishi, Hiroyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.422-430
    • /
    • 2000
  • Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.

  • PDF

Inhibition of hepatic microsomal drug-metabolizing enzymes by imperatorin

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 1986
  • The effect of imperatorin on hepatic microsomal mixed function oxidases (MF0) was investigated. On acute treatment, imperatorin (30 mg/kg, i.p) caused a significant reduction in activities of hepatic aminopyrine N-demethylase, hexobarbital hydroxylase and aniline hydroxylase as well as cytochrome p0450 content in rats and mice. Kinetic studies on rat liver enzymes revealed that imperatorin appeared to be a competitive inhibitor of aminopyrine N-demethylase (Ki,0.007 mM), whereas a non-competitive inhibitor of hexobarbital hydroxylase (Ki, 0.0148 mM). Imperatorin also inhibited non-competitively aniline metabolism (Ki 0.2 mM). Imperatorin binds to phenobarbital-induced cytochrome p-450 to give a typical type 1 binding sepctrum (max. 388nm, min 422 nm). Multiple administrations of imperatorin (30 mg/kg. i. p. daily for 7 days) to mice shortended markedly the duration of hexobarbital narcosis and increased activities of hepatic aminopyrine N-demethylase and hexobarbital hydroxylase and the level of cytochrome p-450 where as aniline hydroxylase activity was unaffected.

  • PDF

Structural and Functional Importance of Two Glutamate Residues, Glu47 and Glu146, Conserved in N-Carbamyl D-Amino Acid Amodohydrolases

  • Oh, Ki-Hoon;Kim, Geun-Joong;Park, Joo-Ho;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • The mutant enzymes of N-carbamyl-D-amino aicd amidohydrolase (N-carbamylase) from Agrobacterium radiobacter NRRL B11291, showing a negligible activity, were selected from the library generated by random mutagenesis. From the sequence analysis, these mutants were found to contain the amino acids substitutions at Cys172, Glu47, and Glu146. Previously, Cys172 was reported to be necessary for the enzyme catalysis. The chemical modification of the N-carbamylase by carboxyl group specific chemical reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC), resulted in a loss of activity. The replacement of glutamic acids with glutamines by site-directed mutagenesis led to aggregation of the enzymes. Mutant enzymes fused with maltose binding protein (MBP) were expressed in soluble form, but were inactive. These results indicate that two glutamic acid residues play an important role in structure and function of the N-carbamylase. Multiple sequence alignment of the related enzymes revealed that Glu47 and Glu146 are rigidly conserved, which suggests that tese residues are crucial for the structure and function of the functionally related C-N hydrolases.

  • PDF

Prostaglandin E Synthase, a Terminal Enzyme for Prostaglandin E2 Biosynthesis

  • Kudo, Ichiro;Murakami, Makoto
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.633-638
    • /
    • 2005
  • Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase $A_2$ enzymes, cyclooxygenase (COX) enzymes, and various lineage-specific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived $PGH_2$ specifically to $PGE_2$, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by anti inflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate $PGE_2$ production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

Selection of Multienzyme Complex-Producing Bacteria Under Aerobic Cultivation

  • Pason Patthra;Chon Gil-Hyong;Ratanakhanokchai Khanok;Kyu Khin Lay;Jhee Ok-Hwa;Kang Ju-Seop;Kim Won-Ho;Choi Kyung-Min;Park Gil-Soon;Lee Jin-Sang;Park Hyun;Rho Min-Suk;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1269-1275
    • /
    • 2006
  • The selection of multienzyme complex-producing bacteria under aerobic condition was conducted for improving the degradation of lignocellulosic substances. The criteria for selection were cellulase and xylanase enzyme production, the presence of cellulose-binding domains and/or xylan-binding domains in enzymes to bind to insoluble substances, the adhesion of bacterial cells to insoluble substances, and the production of multiple cellulases and xylanases in a form of a high molecular weight complex. Among the six Bacillus strains, isolated from various sources and deposited in our laboratory, Paenibacillus curdlanolyticus B-6 strain was the best producer of cellulase and xylanase enzymes, which have both cellulose-binding factors (CBFs) and xylan-binding factors (XBFs). Moreover, multiple carboxymethyl cellulases (CMCases) and xylanases were produced by the strain B-6. The zymograms analysis showed at least 9 types of xylanases and 6 types of CMCases associated in a protein band of xylanase and cellulase with high molecular weight. These cells also enabled to adhere to both avicel and insoluble xylan, which were analyzed by scanning electron microscopy. The results indicated that the strain B-6 produced the multienzyme complex, which may be cellulosome or xylanosome. Thus, P. curdlanolyticus B-6 was selected to study the role and interaction between the enzymes and their substrates and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure for efficient cellulases and xylanases degradation of insoluble polysaccharides.

Partial Purification and Characterization of Enzymes Involved in the Processing of Pre-M1 RNA at the 3' End in Escherichia coli (대장균에서 선구-M1 RNA의 3'-말단 가공에 관여하는 효소들의 부분 정제와 그 특성 조사)

  • Kim, Ha Dong;Ko, Jae Hyeong;Cho, Bong Rae;Lee, Young Hoon;Park, In Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • Ml RNA, the RNA component of RNase P from Escherichia coli, is produced by 3' processing of pre-Ml RNA, a major primary transcript of the rnpB gene. The enzyme fraction containing the processing activity was partially purified and characterized. Since exposure of the active fraction to the high salt condition results in the inactivation of the processing activity, the processing enzyme seems to be an enzyme complex composed of multiple enzymes. The enzyme fraction loses the processing activity when treated with the chemical nuclease lead(II) ion, but regains its activity by the addition of RNA isolated from the enzyme fraction itself, suggesting that an RNA molecule(s) may be essential for the processing activity. Analysis of cleavage sites produced by the partially purified enzyme fraction also implies that the 3' processing occurs by multiple enzymes and at least in two distinct pathways.

  • PDF