• Title/Summary/Keyword: Multiple deep neural network (m-DNN)

Search Result 3, Processing Time 0.017 seconds

Analysis of the Impact of Reflected Waves on Deep Neural Network-Based Heartbeat Detection for Pulsatile Extracorporeal Membrane Oxygenator Control (반사파가 박동형 체외막산화기 제어에 사용되는 심층신경망의 심장 박동 감지에 미치는 영향 분석)

  • Seo Jun Yoon;Hyun Woo Jang;Seong Wook Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • It is necessary to develop a pulsatile Extracorporeal Membrane Oxygenator (p-ECMO) with counter-pulsation control(CPC), which ejects blood during the diastolic phase of the heart rather than the systolic phase, due to the known issues with conventional ECMO causing fatal complications such as ventricular dilation and pulmonary edema. A promising method to simultaneously detect the pulsations of the heart and p-ECMO is to analyze blood pressure waveforms using deep neural network technology(DNN). However, the accurate detection of cardiac rhythms by DNNs is challenging due to various noises such as pulsations from p-ECMO, reflected waves in the vessels, and other dynamic noises. This study aims to evaluate the accuracy of DNNs developed for CPC in p-ECMO, using human-like blood pressure waveforms reproduced in an in-vitro experiment. Especially, an experimental setup that reproduces reflected waves commonly observed in actual patients was developed, and the impact of these waves on DNN judgments was assessed using a multiple DNN (m-DNN) that provides accurate determinations along with a separate index for heartbeat recognition ability. In the experimental setup inducing reflected waves, it was observed that the shape of the blood pressure waveform became increasingly complex, which coincided with an increase in harmonic components, as evident from the Fast Fourier Transform results of the blood pressure wave. It was observed that the recognition score (RS) of DNNs decreased in blood pressure waveforms with significant harmonic components, separate from the frequency components caused by the heart and p-ECMO. This study demonstrated that each DNN trained on blood pressure waveforms without reflected waves showed low RS when faced with waveforms containing reflected waves. However, the accuracy of the final results from the m-DNN remained high even in the presence of reflected waves.

CR-M-SpanBERT: Multiple embedding-based DNN coreference resolution using self-attention SpanBERT

  • Joon-young Jung
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.

Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks (다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류)

  • Ji Woon, Kim;Sung Min, Park;Seong Wook, Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.