감정은 학습능력, 행동, 판단력 등 삶의 많은 부분에 영향을 끼치므로 인간의 본질을 이해하는 데 중요한 역할을 한다. 그러나 감정은 개인이 느끼는 강도가 다르며, 시각 영상 자극을 통해 감정을 유도하는 경우 감정이 지속적으로 유지되지 않는다. 이러한 문제점을 극복하기 위하여 총 4가지 감정자극(행복, 슬픔, 공포, 보통) 시 생체신호(뇌전도, 맥파, 피부전도도, 피부 온도)를 획득하고, 이로부터 특징을 추출하여 분류기의 입력으로 사용하였다. 감정 패턴을 확률적으로 해석하여 다른 공간으로 매핑시켜주는 역할을 하는 Restricted Boltzmann Machine (RBM)과 Multilayer Neural Network (MNN)의 은닉층 노드를 이용하여 비선형적인 성질의 감정을 구별하는 Deep Belief Network (DBN) 감정 패턴 분류기를 설계하였다. 그 결과, DBN의 정확도(약 94%)는 오류 역전파 알고리즘의 정확도(약 40%)보다 높은 정확도를 가지며 감정 패턴 분류기로서 우수성을 가짐을 확인하였다. 이는 향후 인지과학 및 HCI 분야 등에서 활용 가능할 것으로 사료된다.
필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.
문맥 종속형 융합(CDF, Context Dependent Fusion)은 여러 분류기의 결과를 종합하여 성능을 향상시키는 융합 방법으로 주어진 문제의 문맥을 균일한 여러 문맥으로 나누고 각 문맥에서 문맥 종속적인 융합을 시도함으로써 기존 융합 방법에 비해 향상된 성능을 보여주었다. 하지만 CDF는 학습해야할 파라미터의 개수가 많아 학습 데이터가 적은 경우 잡음에 민감한 문제점이 있으며, 선형 알고리듬이라는 한계로 인해 문맥 추출 및 지역적 융합 과정에서 성능 저하의 원인이 된다. 본 논문에서는 CDF의 문제점을 완화할 수 있는 방법으로 SVM(Support Vector Machine)과 커널 주성분 분석을 이용한 CDF-SVM을 제안하였다. 커널 주성분 분석은 입력 벡터에 비선형 변환을 가함으로써 타원형이 아닌 비정형의 클러스터 생성이 가능하도록 해주며, SVM은 융합과정에서 비선형 경계의 생성을 가능하게 해주어 CDF의 선형성 제약을 극복하도록 해준다. 또한 목적함수에 정규화 항을 추가함으로써 잡음 민감성을 줄이도록 하였다. 제안한 CDF-SVM은 기존 CDF 및 그 변형들에 비해 나은 성능을 보여주었으며 이는 실험 결과를 통해 확인할 수 있다.
단백질이 존재하는 세포내의 다중 위치를 정확하게 예측하기 위하여 다중레이블 학습 방법을 광범위하게 비교한다. 이를 위하여 다중레이블 분류의 접근 방법인 알고리즘 적응, 문제 변환, 메타 학습의 여러 방법을 비교 평가한다. 다양한 관점에서 다중레이블 분류 방법의 특성을 평가하기 위하여 12가지 평가 척도를 사용하였고, 최적의 성능을 보이는 방법을 찾기 위하여 새로운 요약 척도를 사용하였다. 비교 실험 결과, 흔하지 않은 다중레이블 집합을 가지치기 하는 멱집합 방법과, 관련 레이블들을 추가된 특징으로 나타내는 분류기-체인 방법의 성능이 높았다. 또한, 이들 방법들로 구성된 여러 개의 분류기를 조합하면 더욱 성능이 향상되었다. 즉, 세포내 위치간의 연관관계를 사용하는 것이 예측에 효과적인데, 특정 생물학적 기능을 수행하는 단백질의 세포내 위치들의 관계는 독립적이지 않고 서로 관련되어 있기 때문이라 판단된다.
패턴분류기 설계의 중요한 조건은 데이터 처리량이 크고 저장 공간은 작고 낮은 가격대로 구현하는 것이다. Maji 등에 의해 제안된 MACA 기반의 패턴분류기는 DV와 DS를 사용하여 복잡도를 $O(n^3)$에서 O(n)으로 줄였다. 본 논문에서는 효율적으로 시간과 공간의 복잡성을 개선하기 위해 LFSR 기반 패턴 분류기를 생성하고 0-기본경로를 이용하여 DV를 구할 수 있는 방법을 제안한다. 그리고 생성한 패턴분류기의 DV와 끌개에 대해 살펴본다. n-비트 DS=(11 ${\cdots}$ 11)를 m개의 $DV_i$로 분할할 수 있고 다양한 패턴분류기를 생성할 수 있다.
최근 모바일 서비스에서 콘텐트를 요약 정보가 담긴 리스트 형태로 제공하는 경우가 증가하고 있다. 이에 따라 사용자가 콘텐트에 관심이 있어도 별점이나 클릭과 같은 명시적 혹은 암묵적 관심을 표현하지 않고 요약 정보를 통해 콘텐트를 소비하는 잠재 관심 표현이 대다수를 차지하게 되었다. 따라서 사용자의 관심을 파악하기 위해서는 잠재 관심 콘텐트의 추론이 필수적이다. 본 연구에서는 사용자의 모바일 상의 콘텐트 소비 로그 패턴을 분석하여 잠재 관심 콘텐트를 추론하는 기법을 제안한다. 특히, 실제 서비스에 적용 시 잘못된 관심 추론은 치명적일 수 있다는 점에서 추론의 정밀도를 극대화시키기 위해 서로 다른 특성을 반영한 다수의 분류기가 모두 동의한 경우에 잠재 관심 콘텐트로 추론하는 만장일치 앙상블 방식을 도입한다. 자체 제작한 어플리케이션으로부터 콘텐트 소비 로그를 수집하였으며 이를 이용하여 제안 방법론의 우수한 성능을 확인하였다. 이러한 잠재 관심 아이템의 정확한 도출은 사용자의 관심에 기초한 추천 시스템과 같은 개인화 서비스의 질 향상에 기여할 것이다.
잡지기사 관련 상품 연계 추천 서비스는 온라인 상에서 잡지 가사의 컨텍스트를 반영하여 상품을 추천하는 서비스이다. 현재 이러한 서비스는 잡지기사와 상품에 부여되어 있는 태그 간의 유사성을 기준으로 한 추천 기술에 의존하고 있으나, 태그 부여 비용과 추천의 정확도가 높지 않은 단점이 있다. 본 논문에서는 잡지 기사 컨텍스트 관련 상품연계 추천 기술의 한 요소로서 상품이미지 정보로부터 상품의 종류를 자동으로 분류하고 이를 상품의 태그로 활용하는 방법을 제안한다. 이미지에서 추출한 시각단어(visual word)와 상품 종류 간의 고차 연관관계를 하이퍼네트워크 기법을 통해 학습하고, 학습된 하이퍼네트워크를 이용하여 상품 이미지에 한 개 이상의 태그를 자동으로 부여한다. 실제 온라인 쇼핑몰에서 사용되는 10 가지 종류의 상품 1,251개의 이미지 데이터를 기반으로, 하이퍼네트워크 이용한 상품이미지 자동 태깅 기법이 다른 기계학습 방법과 비교하여 경쟁력 있는 성능을 보여줌과 동시에, 복수개의 태그 부여를 통해 상품 이미지 태깅의 정확성이 향상됨을 보인다.
Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.193-202
/
2022
The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있으며, 얼굴 영상으로부터 분리한 주파수 성분은 동일한 얼굴에 대하여 또 다른 중요한 하나의 얼굴 특징으로 볼 수 있다. 본 논문은 3차원 얼굴 영상으로부터 등고선 값에 의해 추출된 영역에 대하여 각 영역별로 주파수 분리를 하여 특징을 추출한 후 이 주파수에 대한 퍼지적분을 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형판별분석 알고리즘을 이용하여 유사도를 비교하였다. 클래스간의 분별 정보를 등고선 영역과 각 영역의 주파수 영역에 대해 퍼지적분 방법을 사용하여 인식률을 향상 시켰으며, 깊이 혼합 방식의 경우는 98.6%의 인식률을 나타내었다. 제안된 방법이 다른 알고리즘보다 인식률이 향상되었다.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.