• Title/Summary/Keyword: Multiple classifiers

Search Result 99, Processing Time 0.027 seconds

A High Order Product Approximation Method based on the Minimization of Upper Bound of a Bayes Error Rate and Its Application to the Combination of Numeral Recognizers (베이스 에러율의 상위 경계 최소화에 기반한 고차 곱 근사 방법과 숫자 인식기 결합에의 적용)

  • Kang, Hee-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.681-687
    • /
    • 2001
  • In order to raise a class discrimination power by combining multiple classifiers under the Bayesian decision theory, the upper bound of a Bayes error rate bounded by the conditional entropy of a class variable and decision variables obtained from training data samples should be minimized. Wang and Wong proposed a tree dependence first-order approximation scheme of a high order probability distribution composed of the class and multiple feature pattern variables for minimizing the upper bound of the Bayes error rate. This paper presents an extended high order product approximation scheme dealing with higher order dependency more than the first-order tree dependence, based on the minimization of the upper bound of the Bayes error rate. Multiple recognizers for unconstrained handwritten numerals from CENPARMI were combined by the proposed approximation scheme using the Bayesian formalism, and the high recognition rates were obtained by them.

  • PDF

Speaker Identification on Various Environments Using an Ensemble of Kernel Principal Component Analysis (커널 주성분 분석의 앙상블을 이용한 다양한 환경에서의 화자 식별)

  • Yang, Il-Ho;Kim, Min-Seok;So, Byung-Min;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.188-196
    • /
    • 2012
  • In this paper, we propose a new approach to speaker identification technique which uses an ensemble of multiple classifiers (speaker identifiers). KPCA (kernel principal component analysis) enhances features for each classifier. To reduce the processing time and memory requirements, we select limited number of samples randomly which are used as estimation set for each KPCA basis. The experimental result shows that the proposed approach gives a higher identification accuracy than GKPCA (greedy kernel principal component analysis).

Vehicle Detection Using Optimal Features for Adaboost (Adaboost 최적 특징점을 이용한 차량 검출)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Kim, Jae-Ho;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1129-1135
    • /
    • 2013
  • A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

Classification of algae in watersheds using elastic shape

  • Tae-Young Heo;Jaehoon Kim;Min Ho Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.309-322
    • /
    • 2024
  • Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.

Text Classification with Heterogeneous Data Using Multiple Self-Training Classifiers

  • William Xiu Shun Wong;Donghoon Lee;Namgyu Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.789-816
    • /
    • 2019
  • Text classification is a challenging task, especially when dealing with a huge amount of text data. The performance of a classification model can be varied depending on what type of words contained in the document corpus and what type of features generated for classification. Aside from proposing a new modified version of the existing algorithm or creating a new algorithm, we attempt to modify the use of data. The classifier performance is usually affected by the quality of learning data as the classifier is built based on these training data. We assume that the data from different domains might have different characteristics of noise, which can be utilized in the process of learning the classifier. Therefore, we attempt to enhance the robustness of the classifier by injecting the heterogeneous data artificially into the learning process in order to improve the classification accuracy. Semi-supervised approach was applied for utilizing the heterogeneous data in the process of learning the document classifier. However, the performance of document classifier might be degraded by the unlabeled data. Therefore, we further proposed an algorithm to extract only the documents that contribute to the accuracy improvement of the classifier.

Operation Plan of Big Data Prediction Model using Cut-off-Voting Classifier in Administrative Big Data Environment (행정 빅데이터 환경에서 컷오프-투표 분류기를 활용한 빅데이터 예측모형의 실험)

  • Woosik Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.145-154
    • /
    • 2024
  • In order to operate predictive models utilizing administrative big data, it is crucial to consider policy changes and the characteristics of highly volatile data. Considering this scenario, this study proposes the Cut-off Voting Classifier (CVC) algorithm. This proposed algorithm prevents a sharp decline in accuracy by utilizing multiple weak classifiers. The study validates the proposed algorithm's performance through experiments. The performance evaluation demonstrates the ability to maintain stable prediction rates even in situations with a sharp decline in predictive model accuracy.

Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis (마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법)

  • Kim, Sun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.347-356
    • /
    • 2008
  • High-throughput microarray is one of the most popular tools in molecular biology, and various computational methods have been developed for the microarray data analysis. While the computational methods easily extract significant features, it suffers from inferring modules of multiple co-regulated genes. Hypernetworhs are motivated by biological networks, which handle all elements based on their combinatorial processes. Hence, the hypernetworks can naturally analyze the biological effects of gene combinations. In this paper, we introduce a hypernetwork classifier for microRNA (miRNA) profile analysis based on microarray data. The hypernetwork classifier uses miRNA pairs as elements, and an evolutionary learning is performed to model the microarray profiles. miTNA modules are easily extracted from the hypernetworks, and users can directly evaluate if the miRNA modules are significant. For experimental results, the hypernetwork classifier showed 91.46% accuracy for miRNA expression profiles on multiple human canters, which outperformed other machine learning methods. The hypernetwork-based analysis showed that our approach could find biologically significant miRNA modules.

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF