• Title/Summary/Keyword: Multiple camera

Search Result 531, Processing Time 0.023 seconds

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.

Multiple Camera Collaboration Strategies for Dynamic Object Association

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1169-1193
    • /
    • 2010
  • In this paper, we present and compare two different multiple camera collaboration strategies to reduce false association in finding the correspondence of objects. Collaboration matrices are defined with the required minimum separation for an effective collaboration because homographic lines for objects association are ineffective with the insufficient separation. The first strategy uses the collaboration matrices to select the best pair out of many cameras having the maximum separation to efficiently collaborate on the object association. The association information in selected cameras is propagated to unselected cameras by the global information constructed from the associated targets. While the first strategy requires the long operation time to achieve the high association rate due to the limited view by the best pair, it reduces the computational cost using homographic lines. The second strategy initiates the collaboration process of objects association for all the pairing cases of cameras regardless of the separation. In each collaboration process, only crossed targets by a transformed homographic line from the other collaborating camera generate homographic lines. While the repetitive association processes improve the association performance, the transformation processes of homographic lines increase exponentially. The proposed methods are evaluated with real video sequences and compared in terms of the computational cost and the association performance. The simulation results demonstrate that the proposed methods effectively reduce the false association rate as compared with basic pair-wise collaboration.

A leak detection and 3D source localization method on a plant piping system by using multiple cameras

  • Kim, Se-Oh;Park, Jae-Seok;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.155-162
    • /
    • 2019
  • To reduce the secondary damage caused by leakage accidents in plant piping systems, a constant surveillance system is necessary. To ensure leaks are promptly addressed, the surveillance system should be able to detect not only the leak itself, but also the location of the leak. Recently, research to develop new methods has been conducted using cameras to detect leakage and to estimate the location of leakage. However, existing methods solely estimate whether a leak exists or not, or only provide two-dimensional coordinates of the leakage location. In this paper, a method using multiple cameras to detect leakage and estimate the three-dimensional coordinates of the leakage location is presented. Leakage is detected by each camera using MADI(Moving Average Differential Image) and histogram analysis. The two-dimensional leakage location is estimated using the detected leakage area. The three-dimensional leakage location is subsequently estimated based on the two-dimensional leakage location. To achieve this, the coordinates (x, z) for the leakage are calculated for a horizontal section (XZ plane) in the monitoring area. Then, the y-coordinate of leakage is calculated using a vertical section from each camera. The method proposed in this paper could accurately estimate the three-dimensional location of a leak using multiple cameras.

Solving the Correspondence Problem by Multiple Stereo Image and Error Analysis of Computed Depth (다중 스테레오영상을 이용한 대응문제의 해결과 거리오차의 해석)

  • 이재웅;이진우;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1431-1438
    • /
    • 1995
  • In this paper, we present a multiple-view stereo matching method in case of moving in the direction of optical axis with stereo camera. Also we analyze the obtainable depth precision to show that multiple-view stereo increases the virtual baseline with single-view stereo. This method decides candidate points for correspondence in each image pair and then search for the correct combinations of correspondences among them using the geometrical consistency they must satisfy. Adantages of this method are capability in increasing the accuracy in matching by using the multiple stereo images and less computation due to local processing. This method computes 3-D depth by averaging the depth obtained in each multiple-view stereo. We show that the resulting depth has more precision than depth obtainable by each independent stereo when the position of image feature is uncertain due to image noise. This paper first defines a multipleview stereo agorithm in case of moving in the direction of optical axis with stereo camera and analyze the obtainable precision of computed depth. Then we represent the effect of removing the incorrect matching candidate and precision enhancement with experimental result.

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.

A study on the real time obstacle recognition by scanned line image (스캔라인 연속영상을 이용한 실시간 장애물 인식에 관한 연구)

  • Cheung, Sheung-Youb;Oh, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1551-1560
    • /
    • 1997
  • This study is devoted to the detection of the 3-dimensional point obstacles on the plane by using accumulated scan line images. The proposed accumulating only one scan line allow to process image at real time. And the change of motion of the feature in image is small because of the short time between image frames, so it does not take much time to track features. To obtain recursive optimal obstacles position and robot motion along to the motion of camera, Kalman filter algorithm is used. After using Kalman filter in case of the fixed environment, 3-dimensional obstacles point map is obtained. The position and motion of moving obstacles can also be obtained by pre-segmentation. Finally, to solve the stereo ambiguity problem from multiple matches, the camera motion is actively used to discard mis-matched features. To get relative distance of obstacles from camera, parallel stereo camera setup is used. In order to evaluate the proposed algorithm, experiments are carried out by a small test vehicle.

Quantitative analysis of gene expression by fluorescence images using green fluorescence protein

  • Park, Yong-Doo;Kim, Jong-Won;Suh, You-Hun;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.475-477
    • /
    • 1997
  • We have analyzed the fluorescence image obtaining from green fluorescence protein (GFP). In order to monitor the fluorescence of specific gene, we used the amyloid precursor protein promoter which has been known to act as a major role in the development of Alzheimer's disease. The promoter from - 3.0 kb to + 100 base pair was inserted into the gene expression monitoring GFP vector purchased from Clontech. This construct was transfected into the PC 12 and fibroblast cells and the fluorescence image was captured by two kinds of methods. One is using cheaper CCD camera and other is SIT-CCD camera. or the higher sensitivity of the fluorescence image, we developed the multiple image grabbing program. As a results, the fluorescence image by conventional CCD camera have the similar sensitivity compared with that of the SIT-camera by applying the multiple image grabbing programs. By this system. it will be possible to construct the fluorescence monitoring system with lower cost. And gene expression in real time by fluorescence image will be possible without changing the fluorescence images.

  • PDF

Implementation of augmented reality and object tracking using multiple camera (다중 카메라를 이용한 객체추적과 증강현실의 구현)

  • Kim, Hag-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • When examining current process of object tracking and search, objects were tracked by extracting them from image that was inputted through fixed single camera and objects were recognized through Zoom function to know detailed information on objects tracked. This study proposed system that expresses information on area that can seek and recognize object tracked as augmented reality by recognizing and seeking object by using multi camera. The result of experiment on proposed system showed that the number of pixels that was included in calculation was remarkably reduced and recognition rate of object was enhanced and time that took to identify information was shortened. Compared with existing methods, this system has advantage of better accuracy that can detect the motion of object and advantage of shortening time that took to detect motion.

Collaborative Tracking Algorithm for Intelligent Video Surveillance Systems Using Multiple Network Cameras (지능형 영상 감시 시스템을 위한 다수의 네트워크 카메라를 이용한 협동 추적)

  • Lee, Deog-Yong;Jeon, Hyoung-Seok;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.743-748
    • /
    • 2011
  • In this paper, we propose a collaborative tracking algorithm for intelligent video surveillance systems using the multiple network cameras. To do this, each camera detects a moving object and it's movement direction by motion templates. Once a moving object is detect, the Kalman filter is used to reduce noises, and a collaborative tracking camera is selected according to the movement direction and the camera state. In this procedure, Pan-Tilt-Zoom(PTZ) parameters are assigned to obtain clear images. Finally, some experiments show the validity of the proposed method.

Modeling of a Scan Type Magnetic Camera Image Using the Improved Dipole Model

  • Hwang Ji-Seong;Lee Jin-Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1691-1701
    • /
    • 2006
  • The scan type magnetic camera is proposed to improve the limited spatial resolution due to the size of the packaged magnetic sensor. An image of the scan type magnetic camera, ${\partial}B/{\partial}x$ image, is useful for extracting the crack information of a specimen under a large inclined mag netic field distribution due to the poles of magnetizer. The ${\partial}B/{\partial}x$ images of the cracks of different shapes and sizes are calculated by using the improved dipole model proposed in this paper. The improved dipole model uses small divided dipole models, the rotation and relocation of each dipole model and the principle of superposition. Also for a low carbon steel specimen, the experimental results of nondestructive testing obtained by using multiple cracks are compared with the modeling results to verify the effectiveness of ${\partial}B/{\partial}x$ modeling. The improved dipole model can be used to simulate the LMF and ${\partial}B/{\partial}x$ image of a specimen with complex cracks, and to evaluate the cracks quantitatively using magnetic flux leakage testing.