• Title/Summary/Keyword: Multiple antenna

Search Result 684, Processing Time 0.026 seconds

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Design of a Novel 2D-Metamaterial CRLH ZOR Antenna with a Microstrip Patch Capacitively Coupled to a Rectangular Ring (직각 링과 용량성 결합된 마이크로스트립 패치 구조의 새로운 2차원 메타 재질 구조 CRLH 0차 공진 안테나의 설계)

  • Jang, Geon-Ho;Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • In this paper, a novel rectangular patch antenna is proposed to have Zeroth Order Resonance(ZOR) generated based on the Metamaterial Complosite Right- and Left-Handed(CRLH) structure. Making the in-phase electric field over the entire antenna other than a half-wavelength as the fundamental resonance mode of a standard microstrip patch or its positive multiple, the metallic patch is suggested to be capacitively coupled with only one surrounding rectangular ring, different from the previous 1D ZOR antennas commonly having several metal cells in line. The performance of the proposed antenna is simulated by a 3D field solver that inputs the sizes of the physical structure corresponding to the equivalent circuit designed to have ZOR at 2.4 GHz. Consequently, the resonance frequency, the gain and the antenna efficiency are observed 2.4 GHz, 5 dB and 98%, respectively. Besides, the important property of the proposed antenna is addressed as the combination of the low profile as an advantage of microstrip patch antennas, and the omni-directional field pattern typical of monopole antennas.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Design and Verification of Far-field measurement system for W-band Millimeter-wave Antenna (밀리미터파(W대역) 안테나 측정을 위한 원-전계 측정 시스템 설계 및 검증)

  • Baek, Jong-Gyun;Hwang, In-June;Cho, Chi-Hyun;Joo, Joung-Myoung;Joo, Ji-Han;Park, Jong-Kuk;Kim, Jaesik;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, we designed and verified a Far-field measurement system for measuring the performance of an antenna operating in millimeter wave(W-band). For the antenna test, a measurement system should be selected according to the type of antenna, measurement items, measurement environment and period, etc. In the case of near-field measurement, it takes a lot of time because the number of measurement items increases when the antenna has multiple channels or various beams. Such an antenna can reduce the measurement time through Far-field measurement, and only necessary measurement items can be measured. Therefore, this study secured precise alignment of the far-field measurement system using a high-power laser and improved the measurement accuracy by applying a double amplifier system. The designed system was built in the anechoic chamber and verified by comparison with the verified Near-field measurement system.

Vertical Sectorization Techniques in MISO Downlink Active Antenna Systems (MISO 하향 능동 안테나 시스템에서의 수직 섹터분할 기법)

  • Ahn, Minki;Eom, Subin;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.997-1004
    • /
    • 2015
  • In this paper, we study vertical sectorization techniques in multiple-input single-output (MISO) downlink active antenna systems (AAS). In the AAS, antenna beam patterns can be adjusted in each sector and multiple vertical beams can form the vertical sectorization. Since an exhaustive search based vertical sectorization algorithm requires high computational complexity to find the optimal tilt angles, we propose two vertical sectorization algorithms to reduce the complexity. First, we provide an asymptotic sum rate based algorithm which utilizes a large system approximation of the average sum rate based on the random matrix theory. Next, by using the result in the single sector transmission, the single sector based algorithm is proposed. In the simulation results, we confirm that the proposed algorithms are close to the performance of the exhaustive search algorithm with much reduced complexity.

Compact MIMO Antenna with Wide-Band Isolation and Ground Mode Resonance for Smart Glasses (그라운드 모드의 공진을 이용한 광대역 격리도를 가지는 스마트 안경용 소형 MIMO 안테나)

  • Ryu, Jongin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.817-820
    • /
    • 2018
  • In this letter, a compact multiple-input multiple-output(MIMO) antenna design for a 2.4 GHz wireless local area network(WLAN) band is proposed for use in smart glasses. To miniaturize the MIMO antenna system, a ground plane is employed within the antenna and a T-shaped ground is proposed. To achieve wideband isolation, dual resonance is formed by the ground mode. One resonance is created by the T-shaped ground and the second resonance is created by adding a slot and a capacitor between the two feed lines. The measurements show that the reflection coefficient characteristic was less than -5.1 dB, whereas the isolation obtained was less than -20 dB. The diversity performance was evaluated using the measured two-dimensional radiation patterns, and the envelope correlation coefficient(ECC) values achieved in the target band(2.4~2.5 GHz) were less than 0.1.

Design of a Broadband Sleeve Monopole Antenna by Using Matching Characteristics of the Sleeve (슬리브 정합 특성을 이용한 광대역 슬리브 모노폴 안테나 설계)

  • Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6839-6845
    • /
    • 2015
  • The optimization design method for the broadband operation of the sleeve monopole was proposed to unify the multiple antennas essential to the multi-functional broadband wireless communication systems into one antenna. The structure of the sleeve part was optimized to enhance the impedance matching characteristics based on the theoretical analysis that sleeve part can works as the open stub. The thick monopole was used for the broadband operation. The radius of the sleeve and the permittivity of the dielectric inside the sleeve was optimized to enhance the impedance matching characteristics for the broadband operation. The optimized sleeve monopole having thick monopole shows broadband characteristics over 3:1 bandwidth, from 0.8 to 2.43 GHz, which is suitable for the commercial wireless communication system. The proposed broadband sleeve monopole can reduce multiple antennas essential to the multi-functional broadband systems to one antenna.

An Exact BER Analysis of Dual-Hop MIMO Decouple-and-Forward Relaying with Orthogonal Space-Time Block Codes (직교 시공간 블록 부호를 적용한 듀얼 홉 MIMO Decouple-and-Forward 릴레이에 대한 정확한 비트 에러율 분석)

  • Lee, Jae-Hoon;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1147-1155
    • /
    • 2008
  • In this paper, we derive the probability density function (PDF) of end-to-end signal-to-noise ratio (SNR) for t he dual-hop MIMO (Multiple-Input Multiple-Output) DCF (Decouple-and-Forward) system. We also provide the end-to-end bit error ratio (BER) with M-ary PSK constellations for four antenna combinations. These are (1,8,1), (8,1,8), (2,4,2), and (4,2,4). Each number in the parentheses is the number of the transmit antenna at the source, the transmit and receive antenna at the relay and the receive antenna at the destination, respectively. We show t hat the end-to-end BER expression with M-ary PSK constellations makes an exact match with numerical results. We also show that MIMO DCF relay system achieves spatial diversity.

Performance Analysis of Adaptive Beamforming System Based on Planar Array Antenna (평면 배열 안테나 기반의 적응 빔형성 시스템 성능 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The signal intelligence (SIGINT) technology is actively used for collecting various data, in a number of fields, including a military industry. In order to collect the signal information and data and to transmit/receive the collected data efficiently, the accurate angle-of-arrival (AOA) information is required and communication disturbance from the interference or jamming signal should be minimized. In this paper, we present the structure of an adaptive beam-forming satellite system based on the planar array antenna, for collecting and transmitting/receiving the signal information and data efficiently. The presented adaptive beam-forming system consists of an antenna in the form of a planar array, an AOA estimator based on the Multiple Signal Classification (MUSIC) algorithm, an adaptive Minimum Variance Distortionless Response (MVDR) interference canceler, a signal processing and D/B unit, and a transmission beamformer based on Minimum mean Square Error (MMSE). In addition, through the computer simulation, we evaluate and analyze the performance of the proposed system.