• Title/Summary/Keyword: Multiple Vibration Control

Search Result 171, Processing Time 0.021 seconds

Analytical Development of a Robust Controller for Smart Structural Systems

  • Park Chul Hue;Hong Seong Il;Park Hyun Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1138-1147
    • /
    • 2005
  • This paper aims at demonstrating the feasibility of active control of beams with a multiobjective state-feedback control technique. The multiobjective state-feedback controller is de­signed on a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of Hoo performance and H2 performance satisfying constraints on the closed-loop pole locations in the face of model uncertainties. The controller is also designed to reject the effects of the noise and external of disturbances. For the theoretical analysis, the governing equation of motion is derived by Hamilton's principle to describe the dynamics of a smart structural system. Numerical examples are presented to demonstrate the effectiveness of the integrated robust controller in damping out the multiple vibration modes of the piezo/beam system.

Evaluation of Sound Quality of Air-conditioning Noise (에어컨 소음의 Sound Quality 평가)

  • Jeon, Jin-Yong;You, Jin;Kim, Su-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.551-558
    • /
    • 2006
  • Noise from air-conditioner system installed in the ceiling of a classroom was evaluated to investigate the sound quality of air-conditioning noise. Harmonics of air-conditioning noise were removed and the sound pressure levels of the frequency bands from $250{\sim}630Hz$ were changed to control sound quality. Evaluation for refreshing sensation was conducted using a paired comparison method and the results showed that noise without harmonics were preferred to noise with harmonics. The noises which have larger level increases to the unchanged noise at $250{\sim}630Hz$ were evaluated better in both of the noises with and without harmonics. Results of multiple regression analysis on psychoacoustic parameters and subjective preferences showed sharpness as a major affecting factor in describing the refreshing aspect of air-conditioning sound.

Particle Swarm Optimization based Haptic Localization of Plates with Electrostatic Vibration Actuators

  • Gwanghyun Jo;Tae-Heon Yang;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Haptic actuators for large display panels play an important role in bridging the gap between the digital and physical world by generating interactive feedback for users. However, the generation of meaningful haptic feedback is challenging for large display panels. There are dead zones with low haptic sensations when a small number of actuators are applied. In contrast, it is important to control the traveling wave generated by the actuators in the presence of multiple actuators. In this study, we propose a particle swarm optimization (PSO)-based algorithm for the haptic localization of plates with electrostatic vibration actuators. We modeled the transverse displacement of a plate under the effect of actuators by employing the Kirchhoff-Love plate theory. In addition, starting with twenty randomly generated particles containing the actuator parameters, we searched for the optimal actuator parameters using a stochastic process to yield localization. The capability of the proposed PSO algorithm is reported and the transverse displacement has a high magnitude only in the targeted region.

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.

Spatial Manipulation of Sound Using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1378-1388
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments. the quality of sound can not be manifested over every Position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

Seismic Response of Arch Structure Subjected to Different Ground Motion (상이한 지반조건을 갖는 아치구조물의 지진응답 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

Spectral analysis of semi-actively controlled structures subjected to blast loading

  • Ewing, C.M.;Guillin, C.;Dhakal, R.P.;Chase, J.G.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.79-93
    • /
    • 2009
  • This paper investigates the possibility of controlling the response of typical portal frame structures to blast loading using a combination of semi-active and passive control devices. A one storey reinforced concrete portal frame is modelled using non-linear finite elements with each column discretised into multiple elements to capture the higher frequency modes of column vibration response that are typical features of blast responses. The model structure is subjected to blast loads of varying duration, magnitude and shape, and the critical aspects of the response are investigated over a range of structural periods in the form of blast load response spectra. It is found that the shape or length of the blast load is not a factor in the response, as long as the period is less than 25% of the fundamental structural period. Thus, blast load response can be expressed strictly as a function of the momentum applied to the structure by a blast load. The optimal device arrangements are found to be those that reduce the first peak of the structural displacement and also reduce the subsequent free vibration of the structure. Semi-active devices that do not increase base shear demands on the foundations in combination with a passive yielding tendon are found to provide the most effective control, particularly if base shear demand is an important consideration, as with older structures. The overall results are summarised as response spectra for eventual potential use within standard structural design paradigms.

Noise Control of Plate Structures with Optimal Design of Multiple Piezoelectric Actuators (복수 압전 가진기의 최적 설계를 통한 판구조물의 소음제어)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.263-270
    • /
    • 1996
  • Noise control of a plate structure with multiple disk shaped piezoelectric actuators is studied. The plate is excited by an acoustic pressure field produced by a noise source located below the plate. Finite element modeling is used for the plate structure that supports a combination of three dimensional solid, flat shell and transition elements. The objective function, in the optimization procedure, is to minimize the sound energy radiated onto a hemispherical surface of given radius and the design parameters are the locations and sizes of the piezoelectric actuators as well as the amplitudes of the voltages applied to them. Automatic mesh generation is addressed as part of the modeling procedure. Numerical results for both resonance and off resonance frequencies show remarkable noise reduction and the optimal locations of the actuators are found to be close to the edges of the plate structure. The optimized result is robust such that when the acoustic pressure pattern is changed, reduction of radiated sound is still maintained. The robustness of an optimally designed structure is also tested by changing the frequency of the noise source using only the actuator voltages as design parameters.

  • PDF

Active tuned tandem mass dampers for seismic structures

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.143-162
    • /
    • 2019
  • Motivated by a simpler and more compact hybrid active tuned mass damper (ATMD) system with wide frequency spacing (i.e., high robustness) but not reducing the effectiveness using the least number of ATMD units, the active tuned tandem mass dampers (ATTMD) have been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Likewise, it is expected that the frequency spacing of the ATTMD is comparable to that of the active multiple tuned mass dampers (AMTMD) or the multiple tuned mass dampers (MTMD). In accordance with the mode generalised system in the specific vibration mode being controlled (simply referred herein to as the structure), the closed-form expression of the dimensionless displacement variances has been derived for the structure with the attached ATTMD. The criterion for the optimum searching may then be determined as minimization of the dimensionless displacement variances. Employing the gradient-based optimization technique, the effects of varying key parameters on the performance of the ATTMD have been scrutinized in order to probe into its superiority. Meanwhile, for the purpose of a systematic comparison, the optimum results of two active tuned mass dampers (two ATMDs), two tuned mass dampers (two TMDs) without the linking damper, and the TTMD are included into consideration. Subsequent to work in the frequency domain, a real-time Simulink implementation of dynamic analysis of the structure with the ATTMD under earthquakes is carried out to verify the findings of effectiveness and stroke in the frequency domain. Results clearly show that the findings in the time domain support the ones in the frequency domain. The whole work demonstrates that ATTMD outperforms two ATMDs, two TMDs, and TTMD. Thereinto, a wide frequency spacing feature of the ATTMD is its highlight, thus deeming it a high robustness control device. Furthermore, the ATTMD system only needs the linking dashpot, thus embodying its simplicity.