• Title/Summary/Keyword: Multiple UAV's

Search Result 26, Processing Time 0.025 seconds

Structure Design of Surveillance Location-Based UAV Motor Primitives (감시 위치 기반의 UAV 모터프리미티브의 구조 설계)

  • Kwak, Jeonghoon;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, the surveillance system research has focused because Unmanned Aerial Vehicle(UAV) has the ability to monitor wide area. When the wide area are monitored, controlling UAVs repeatedly by pilots invokes the cost problem to operate UAVs. If monitoring path can be defined in advance, the cost problem can be solved by controlling UAVs autonomously based on the monitoring path. The traditional approach generates multiple motor primitives based on flied GPS locations. However, the monitoring points by UAVs are not considered by the generated motor primitives, the surveillance by UAVs is not performed properly. This paper proposes a motor primitive structure for surveillance UAVs to be flied autonomously. Motor primitives are generated automatically by setting surveillance points to denote surveillance targets accurately.

Structural Analysis of Fasteners in the Aircraft Structure of the High-Altitude Long-Endurance UAV (고고도 장기체공 무인기용 기체구조 체결부 구조 해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Kim, Tae-Uk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Unmanned Aerial Vehicles (UAV) have been used for various purposes in multiple fields, such as observation, communication relaying, and information acquisition. Nowadays, UAVs must have high performance in order to acquire more precise information in larger amounts than is now possible while performing for long periods. At present, domestically, a high-altitude long-endurance UAV (HALE UAV) for long-term flight in the stratosphere has been developed in order to replace some functions of the satellite. In this study, as a part of structural soundness evaluation of the aircraft structure developed for the HALE UAV, the structural soundness of the fasteners of the fuselage and tail is evaluated by calculating the margin of safety(M.S). The result confirms the validity of the design of the fasteners in the aircraft structure of the UAV.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Development of Adaptive Ground Control System for Multi-UAV Operation and Operator Overload Analysis (복수 무인기 운용을 위한 적응형 지상체 개발 및 운용자 과부하 분석)

  • Oh, Jangjin;Choi, Seong-Hwan;Lim, Hyung-Jin;Kim, Seungkeun;Yang, Ji Hyun;Kim, Byoung Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.529-536
    • /
    • 2017
  • The general ground control system has control and information display functions for the operation of a single unmanned aerial vehicle. Recently, the function of the single ground control system extends to the operation of multiple UAVs. As a result, operators have been exposed to more diverse tasks and are subject to task overload due to various factors during their mission. This study proposes an adaptive ground control system that reflects the operator's condition through the task overload measurement of multiple UAV operators. For this, the ground control software is developed to control multiple UAVs at the same time, and the simulator with six degree-of-freedom aircraft dynamics is constructed for realistic human-machine-interface experiments by the operators.

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

Implementation of Multilateral Control System for Small UAV Control-Focused on Design (소형 무인기 통제를 위한 다자간 방식 관제시스템 구축방안-설계 중심으로)

  • Choi, Hyun-Taek;Kim, Seok-Kwan;Ryu, Gab-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • In this paper, we propose a design method for the construction of LTE-based small unmanned aerial vehicle control system to quickly and reliably collect multiple small unmanned aerial vehicle position information simultaneously flying all over the country. In particular, the main requirements are the network (N/W), hardware (H/ W), software(SW), Database(DB), development architecture, and business needs. To satisfy these requirements, N/W, H/W, SW, DB design, and architectural design plan were suggested regarding the design requirements of a small UAV system. To effectively control the small unmanned multi-party system in the system design, the architecture is divided into the front-end service area and the back-end service area according to the function and role of the unit system. In the front-end service area that grasps and controls the position and state of small unmanned aerial vehicles (UAVs), we have studied the design part that can be expanded to N through TCP/IP network by applying Client PC method.

An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm (면역 알고리즘을 이용한 쿼드로터 장애물회피 기술)

  • Son, Byung-Rak;Han, Chang-Seup;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.