• Title/Summary/Keyword: Multiple Tuned liquid damper

Search Result 9, Processing Time 0.028 seconds

An Analysis on Performance Test of TLD and MTLD Using Shaking Table (진동대를 이용한 TLD와 MTLD의 성능실험에 대한 분석)

  • You, Jang-Youl;Song, Chang-Hyun;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.139-144
    • /
    • 2008
  • Experimental studies using tuned liquid damper(TLD) and multiple tuned liquid damper(MTLD), which are passive control devices consisting of a rigid tank filed with liquid, are used to suppress vibration of structures. This TLD and MTLD are attributable to several potential advantage -low costs, easy; easy to install in existing structures: effective even for small amplitude vibrations. For this, we conducted shaking table experiments for two natural frequencies (0.44Hz, 0.55Hz) according to the excitation amplitude(1mm, 3mm, 5mm, 10mm, 20mm) So, the majority of studies suggested optimized natural frequence and excitation amplitude for control devices.(TLD and MTLD type : circle, rectangular) As the analysis result, we verified vibration reduction effects of a MTLD by analyzing the performance experiment of TLD and MTLD

  • PDF

Use of TLD and MTLD for Control of Wind-Induced Vibration of Tall Buildings

  • Kim, Young-Moon;You, Ki-Pyo;Ko, Nag-Ho;Yoon, Sung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1346-1354
    • /
    • 2006
  • Excessive acceleration experienced at the top floors in a building during wind storms affect the serviceability of the building with respect to occupant comfort and discomfort. Tuned liquid damper (TLD) and multiple tuned liquid damper (MTLD), which are passive control devices consisting of a rigid tank filled with liquid, are used to suppress vibration of structures. These TLD and MTLD offer several potential advantages-low costs, easy installation in existing structures and effectiveness even for small-amplitude vibrations. This study carries out a theoretical estimation of the most effective damping ratios that can be achieved by TLD and MTLD. Damping by TLD an MTLD reduced the frequency response of high-rise buildings by approximately 40% in urban and suburban areas.

Vibration Control of Wind Response of Tall Building Using TLD and MTLD (TLD와 MTLD을 이용한 고층건물의 풍응답 진동제어)

  • You, Ki-Pyo;Ko, Nag-Ho;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.73-80
    • /
    • 2005
  • Serviceability of buildings is affect by excessive acceleration experienced at the top floors in wind storms that may cause discomfort to the occupants. Tuned liquid damper(TLD) and multiple tuned liquid damper(MTLD) are passive control devices that consists of rigid tank filled with liquid to suppress the vibration of structures. This TLD and MTLD are attributable to several potential advantages - low costs; easy to install in existing structures; effective even for small-amplitude vibrations. In this paper, the behavior of TLD and MTLD are investigated analytically and wind tunnel test of high-frequency force balance.

  • PDF

Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control (TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구)

  • 김홍진;김형섭;민경원;오정근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.85-91
    • /
    • 2003
  • TLCD is a good alternative to TMD for control of structures because of its cost efficiency, ease of installation, little maintenance requirement, potential for multiple usage, and ease of re-tuning. In this study, the control performances of TMD and TLCD are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special. it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

Optimal Design Parameters of Multiple Tuned Liquid Column Dampers for a 76-Story Benchmark Building (76층 벤치마크 건물에 설치된 다중 동조 액체 기둥 감쇠기의 최적 설계 변수)

  • 김형섭;민경원;김홍진;이상현;안상경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.251-258
    • /
    • 2004
  • This paper presents the parameter study of multiple tuned liquid damper (MTLCD) applied to the 76-story benchmark building. A parameter study involves the effects of number of TLCD, frequency range, and central tuning frequency ratio, which are important parameters of MTLCD. The performance of MTLCD is carried out numerical analysis which reflects the nonlinear property of liquid motion. The parameters of TLCD exist different each optimal values according to mass ratio. The performance of single-TLCD (STLCD) is sensitive for tuning frequency ratio. Therefore, MTLCD is proposed to protect such the shortcoming of STLCD. The result of numerical analysis presents improved performance for robustness of MTLCD

  • PDF

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

An experimental study on motions of a VLCO for wave power generation(1. Simple floating body) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구(1. 단일 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.103-107
    • /
    • 2013
  • The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed that a simple floating body was filled with internal fluid of same draft. The characteristics of motions were evaluated in each case of the opening or closing of the upper valves.

Motion analysis of a VLCO for wave power generation (파력발전용 가변수주진동장치의 운동해석)

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2014
  • The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of the multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed in two models of same draft. The one is that weights were filled, and the other is that water was filled. The numerical results were estimated by assuming that do not exist internal flow, and the results were compared with the results of experiments.

Experimental study on motions of VLCO for wave power generation (2. Multiple floating bodies) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구 (2. 다수 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.27-31
    • /
    • 2013
  • The structure of a variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system for absorbing the high kinetic energy of the accelerated motions of multiple floating bodies using an air-spring effect produced the installation of inner air chambers. Thus, a VLCO can improve the energy efficiency of the activating object type of wave energy converters made by the Pelamis Company. In this research, an experiment was performed in two cases: with the top valves closed and open. The floating bodies were connected by hinges. The effect of the internal flow was estimated by comparing the results for the closed and open valves.