• Title/Summary/Keyword: Multiple Radar Resource Management

Search Result 5, Processing Time 0.017 seconds

Design and Implementation of Radar Resource Management Algorithms for Airborne AESA Radar (항공기 탑재 능동 위상배열 레이더의 자원관리 알고리즘 설계 및 구현)

  • Roh, Ji-Eun;Chon, Sang-Mi;Ahn, Chang-Soo;Jang, Seong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1190-1197
    • /
    • 2013
  • AESA(Active Electronically Scanned Array radar) radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, radar resource management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. This paper deals with a design of radar resource management algorithms and simulator implemented main algorithms for development of airborne AESA radar. In addition, evaluation results show that developed radar system satisfies a main requirement about simultaneous multiple target tracking and detection by adopting proposed algorithms.

Task Scheduling and Multiple Operation Analysis of Multi-Function Radars (다기능 레이더의 임무 스케줄링 및 복수 운용 개념 분석)

  • Jeong, Sun-Jo;Jang, Dae-Sung;Choi, Han-Lim;Yang, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.254-262
    • /
    • 2014
  • Radar task scheduling deals with the assignment of task to efficiently enhance the radar performance on the limited resource environment. In this paper, total weighted tardiness is adopted as the objective function of task scheduling in operation of multiple multi-function radars. To take into account real-time implementability, heuristic index-based methods are presented and investigated. Numerical simulations for generic search and track scenarios are performed to evaluate the proposed methods, in particular investigating the effectiveness of multi-radar operation concepts.

TB and Knapsack Based Improved Scheduling Techniques for Multi-Function Radar (TB와 냅색 기반의 향상된 다기능 레이다 스케줄링 기법)

  • Hwang, Min-Young;Yang, Woo-Young;Shin, Sang-Jin;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.976-985
    • /
    • 2018
  • Modern radars such as the phase array radar can handle various tasks by generating a beam from a phased array antenna. Radar can be used for miscellaneous applications such as surveillance, tracking, missile guidance etc. Previous radar systems could handle only one task at a time. As such, multiple radars were required to perform simultaneous tasks. Multi-function radars can perform many tasks using only one radar system. However, the radar's resources are limited in this instance. To efficiently utilize time, it is necessary to properly schedule tasks in the radar's timeline. In this report, we investigate the efficiency of different scheduling tasks.

Communication and data processing strategy for the electromagnetic wave precipitation gauge system (전파강수계 시스템의 통신 및 자료처리 전략 개발)

  • Lee, Jeong Deok;Kim, Minwook;Park, Yeon Gu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.62-66
    • /
    • 2017
  • In this paper, we present the development of communication and data processing strategy for the electromagnetic wave precipitation gauge system. The electromagnetic wave precipitation gauge system is a small system for deriving area rainfall rates within 1 km radius through dual polarization radar observation at 24GHz band. It is necessary to take consider for measurement of accurate precipitation under limited computing resources originating from small systems and to minimize the use of network for the unattended operation and remote management. To overcome computational resource limitations, we adopted the fuzzy logic for quality control to eliminate non-precipitation echoes and developed the method by weighted synthesis of various rain rate fields using multiple radar QPE formulas. Also we have designed variable data packets rules to minimize the network traffic.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.