• Title/Summary/Keyword: Multiple Objective Genetic Algorithm

Search Result 90, Processing Time 0.027 seconds

Clustering Parts Based on the Design and Manufacturing Similarities Using a Genetic Algorithm

  • Lee, Sung-Youl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2011
  • The part family (PF) formation in a cellular manufacturing has been a key issue for the successful implementation of Group Technology (GT). Basically, a part has two different attributes; i.e., design and manufacturing. The respective similarity in both attributes is often conflicting each other. However, the two attributes should be taken into account appropriately in order for the PF to maximize the benefits of the GT implementation. This paper proposes a clustering algorithm which considers the two attributes simultaneously based on pareto optimal theory. The similarity in each attribute can be represented as two individual objective functions. Then, the resulting two objective functions are properly combined into a pareto fitness function which assigns a single fitness value to each solution based on the two objective functions. A GA is used to find the pareto optimal set of solutions based on the fitness function. A set of hypothetical parts are grouped using the proposed system. The results show that the proposed system is very promising in clustering with multiple objectives.

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

Process Design of Electric Steel by a Multiple Objective Optimization (다중 목적함수 최적화기법을 이용한 전기강판 생산 공정설계)

  • 정제숙;변상민;김홍준;황상부
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.153-157
    • /
    • 1997
  • The investigation deals with the process design in cold rolling mill of electric plant. In this study, multiple objective optimization is conducted by a genetic algorithm, where the fitness values are evaluated on the basis of one - dimensional model of flat rolling. The approach is applied to the determination of the process conditions which are optimal with regard to minimization of roll power and maximization of productivity.

  • PDF

Optimizing Movement of A Multi-Joint Robot Arm with Existence of Obstacles Using Multi-Purpose Genetic Algorithm

  • Toyoda, Yoshiaki;Yano, Fumihiko
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • To optimize movement of a multi-joint robot arm is known to be a difficult problem, because it is a kind of redundant system. Although the end-effector is set its position by each angle of the joints, the angle of each joint cannot be uniquely determined by the position of the end-effector. There exist the infinite number of different sets of joint angles which represent the same position of the end-effector. This paper describes how to manage the angle of each joint to move its end-effector preferably on an X-Y plane with obstacles in the end-effector’s reachable area, and how to optimize the movement of a multi-joint robot arm, evading obstacles. The definition of “preferable” movement depends upon a purpose of robot operation. First, we divide viewpoints of preference into two, 1) the standpoint of the end-effector, and 2) the standpoint of joints. Then, we define multiple objective functions, and formulate it into a multi-objective programming problem. Finally, we solve it using multi-purpose genetic algorithm, and obtain reasonable results. The method described here is possible to add appropriate objective function if necessary for the purpose.

Multihazard capacity optimization of an NPP using a multi-objective genetic algorithm and sampling-based PSA

  • Eujeong Choi;Shinyoung Kwag;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.644-654
    • /
    • 2024
  • After the Tohoku earthquake and tsunami (Japan, 2011), regulatory efforts to mitigate external hazards have increased both the safety requirements and the total capital cost of nuclear power plants (NPPs). In these circumstances, identifying not only disaster robustness but also cost-effective capacity setting of NPPs has become one of the most important tasks for the nuclear power industry. A few studies have been performed to relocate the seismic capacity of NPPs, yet the effects of multiple hazards have not been accounted for in NPP capacity optimization. The major challenges in extending this problem to the multihazard dimension are (1) the high computational costs for both multihazard risk quantification and system-level optimization and (2) the lack of capital cost databases of NPPs. To resolve these issues, this paper proposes an effective method that identifies the optimal multihazard capacity of NPPs using a multi-objective genetic algorithm and the two-stage direct quantification of fault trees using Monte Carlo simulation method, called the two-stage DQFM. Also, a capacity-based indirect capital cost measure is proposed. Such a proposed method enables NPP to achieve safety and cost-effectiveness against multi-hazard simultaneously within the computationally efficient platform. The proposed multihazard capacity optimization framework is demonstrated and tested with an earthquake-tsunami example.

Approximate Multi-Objective Optimization of Stiffener of Steel Structure Considering Strength Design Conditions (강도조건을 고려한 강구조물 보강재의 다목적 근사최적설계)

  • Jeon, Eungi;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.192-197
    • /
    • 2015
  • In many fields, the importance of reducing weight is increasing. A product should be designed such that it is profitable, by lowering costs and exhibiting better performance than other similar products. In this study, the mass and deflection of steel structures have to be reduced as objective functions under constraint conditions. To reduce computational analysis time, central composite design(CCD) and D-Optimal are used in design of experiments(DOE). The accuracy of approximate models is evaluated using the $R^2$ value. In this study, the objective functions are multiple, so the non-dominant sorting genetic algorithm(NSGA-II), which is highly efficient, is used for such a problem. In order to verify the validity of Pareto solutions, CAE results and Pareto solutions are compared.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

Multiagent Scheduling of a Single Machine Under Public Information (공적 정보하에서 단일 설비의 다중 에이전트 스케줄링)

  • Lee, Yong-Kyu;Choi, Yoo-Seong;Jeong, In-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • This paper considers a multiagent scheduling problem under public information where a machine is shared by multiple agents. Each agent has a local objective among the minimization of total completion time and the minimization of maximum. In this problem, it is assumed that scheduling information is public. Therefore an agent can access to complete information of other agents and pursue efficient schedules in a centralized manner. We propose an enumeration scheme to find Pareto optimal schedules and a multiobjective genetic algorithm as a heuristic approach. Experimental results indicate that the proposed genetic algorithm yields close-to Pareto optimal solution under a variety of experimental conditions.

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.