• Title/Summary/Keyword: Multiple Measurement Vector

Search Result 35, Processing Time 0.023 seconds

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

A New Algorithm for the Interpretation of Joint Orientation Using Multistage Convergent Photographing Technique (수렴다중촬영기법을 이용한 새로운 절리방향 해석방법)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.486-494
    • /
    • 2003
  • When the orientations of joints are measured on a rock exposure, there are frequent cases that are difficult to approach by the surveyor to the target joints or to set up scanlines on the slope. In this study, to complement such limit and weak points, a new algorithm was developed to interpret joint orientation from analyzing the images of rock slope. As a method of arranging the multiple images of a rock slope, the multistage convergent photographing system was introduced to overcome the limitation of photographing direction which existing method such as parallel stereophotogrammetric system has and to cover the range of image measurement, which is the overlapping area between the image pair, to a maximum extent. To determine camera parameters in the perspective projection equation that are the main elements of the analysis method, a new method was developed introducing three ground control points and single ground guide point. This method could be considered to be very simple compared with other existing methods using a number of ground control points and complicated analysis process. So the global coordinates of a specific point on a rock slope could be analyzed with this new method. The orientation of a joint could be calculated using the normal vector of the joint surface which can be derived from the global coordinates of several points on the joint surface analyzed from the images.

Development of Exercise Analysis System Using Bioelectric Abdominal Signal (복부생체전기신호를 이용한 운동 분석 시스템 개발)

  • Gang, Gyeong Woo;Min, Chul Hong;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.183-190
    • /
    • 2012
  • Conventional physical activity monitoring systems, which use accelerometers, global positioning system (GPS), heartbeats, or body temperature information, showed limited performances due to their own restrictions on measurement environment and measurable activity types. To overcome these limitations, we developed a portable exercise analysis system that can analyze aerobic exercises as well as isotonic exercises. For bioelectric signal acquisition during exercise, waist belt with two body contact electrodes was used. For exercise analysis, the measured signals were firstly divided into two signal groups with different frequency ranges which can represent respiration related signal and muscular motion related signal, respectively. After then, power values, differential of power values, and median frequency values were selected for feature values. Selected features were used as inputs of support vector machine (SVM) to classify the exercise types. For verification of statistical significance, ANOVA and multiple comparison test were performed. The experimental results showed 100% accuracy for classification of aerobic exercise and isotonic resistance exercise. Also, classification of aerobic exercise, isotonic resistance exercise, and hybrid types of exercise revealed 92.7% of accuracy.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).