• Title/Summary/Keyword: Multiple Linear Regression Model

Search Result 636, Processing Time 0.024 seconds

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV (스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구)

  • Park Juncheol;Roh Taeseong;Choi Dongwhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.248-251
    • /
    • 2005
  • In this paper, health monitoring technique has been studied for performance deterioration caused by the defects of the gas turbine. The parameters for performance diagnostics have been extracted by using GSP program for modeling the target engine. The virtual sensor model for the health monitoring has been built of those data. The position and magnitude of the defects of the engine components have been determined by using Multiple Linear Regression technique and the method using the weight in order to diagnose the single and multiple defects.

  • PDF

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

MapReduce-based Localized Linear Regression for Electricity Price Forecasting (전기 가격 예측을 위한 맵리듀스 기반의 로컬 단위 선형회귀 모델)

  • Han, Jinju;Lee, Ingyu;On, Byung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.

Comparison of Data-based Real-Time Flood Forecasting Model (자료기반 실시간 홍수예측 모형의 비교·검토)

  • Choi, Hyun Gu;Han, Kun Yeun;Roh, Hong Sik;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1809-1827
    • /
    • 2013
  • Recently we need to take various measures to prepare for extreme flood that occur due to climate change. It is important that establish flood forecasting system to prepare flood over non-structure measures. The objective of this study is to develop superior real-time flood forecasting model by comparing the Neuro-fuzzy model and the multiple linear regression model. The Neuro-fuzzy model and the multiple linear regression model are established using same input data and applied for various flood events in Nakdong basin. The results show that the Neuro-fuzzy model can carry out flood forecasting results more accurately than the multiple linear regression model. This study can contribute to the establishment of a high accuracy flood information system that secure lead time in Nakdong basin.

Multiple Structural Change-Point Estimation in Linear Regression Models

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.423-432
    • /
    • 2012
  • This paper is concerned with the detection of multiple change-points in linear regression models. The proposed procedure relies on the local estimation for global change-point estimation. We propose a multiple change-point estimator based on the local least squares estimators for the regression coefficients and the split measure when the number of change-points is unknown. Its statistical properties are shown and its performance is assessed by simulations and real data applications.

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.219-228
    • /
    • 2022
  • The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.

On study for change point regression problems using a difference-based regression model

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.539-556
    • /
    • 2019
  • This paper derive a method to solve change point regression problems via a process for obtaining consequential results using properties of a difference-based intercept estimator first introduced by Park and Kim (Communications in Statistics - Theory Methods, 2019) for outlier detection in multiple linear regression models. We describe the statistical properties of the difference-based regression model in a piecewise simple linear regression model and then propose an efficient algorithm for change point detection. We illustrate the merits of our proposed method in the light of comparison with several existing methods under simulation studies and real data analysis. This methodology is quite valuable, "no matter what regression lines" and "no matter what the number of change points".

Study on the Critical Storm Duration Decision of the Rivers Basin (중소하천유역의 임계지속시간 결정에 관한 연구)

  • Ahn, Seung-Seop;Lee, Hyeo-Jung;Jung, Do-June
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.