음악은 인간의 감성을 소리로 표현하는 창조적 예술 행위이다. 음악은 사람들의 기분을 우울하게 혹은 기쁘게 변화시킬 수 있다. 따라서 음악을 감상하는 데 있어 감성은 소비자에게 적합한 음악을 찾고 들려주는 데 매우 중요한 요소인데, 다양한 음원 서비스에서 제공하는 추천 알고리즘은 사용자의 기본적인 정보(성별, 나이, 감상 횟수 등)와 사용자의 플레이 기록에 기반한 음악 추천 방식을 주로 사용하고 있다. 본 연구에서는 음악을 감상하는 개인의 감성을 고려하여 각 음원이 가지는 고유의 감성을 기본으로 한 음악 추천 알고리즘을 제안해 보고자 한다. 구체적으로, 사용자들이 자주 듣는 음악과 그렇지 않은 음악을 기준으로 '감정 패턴'을 추출 후 상관관계를 확인하고자 하며, 앞선 결과를 기반으로 사용자들이 원하는 노래에 대한 검색과 사용자 감성 기반 추천 방법을 도출해내보고자 한다. 이를 위해 본 연구에서는 사례기반추론 기법을 이용하여 사람들이 주로 듣는 음악과 비슷한 '감성 패턴'을 갖는 특정한 곡을 추천해주는 알고리즘을 개발하였다. 먼저, 분석에 필요한 감정 형용사를 정리하여 변수화 시키고, 의미 있는 것끼리 묶어 음악 감성지수를 개발하였고, 분석의 대상이 될 음원에 대해 고유의 감성지수 점수를 측정하였다. 마지막으로 도출된 점수의 결과를 통해 유사한 감정 패턴이 나오는 곡들을 유사 곡 리스트로 분류하고 사용자들에게 추천하는 과정을 거친다. 앞선 일련의 과정을 거처 도출된 결과는 음원 추천 시스템뿐만 아니라, 인기 있는 곡과 아닌 곡에 영향을 미치는 변수 도출 및 음원 출시 전, 해당 곡의 스트리밍 수 예측 모형 구축 등 다양한 용도로 사용될 수 있을 것으로 기대한다.
기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.
정교한 교합을 달성하기 위해서는 브라켓을 정확하게 위치시키는 것이 필수적이다. 그러나, 많은 원인에 의해 브라켓의 위치가 변할 수 있다. 본 연구는 브라켓의 수직적 위치에 변화가 있을 때 이것이 치관경사도에 미치는 영향을 연구하고자 함이다. 연구대상으로는 서울대학교 치과대학 교정학교실의 정상교합자 표본 중 상태가 양호한 10명(남자 6명, 여자 4명, 평균 연령 22.3세)을 대상으로 하였으며 , 이들의 치아모형을 laser scanner를 이용, 3차원적으로 스캔을 시행하였고, 컴퓨터 프로그램 상에서 스캔된 치아모형에 대한 계측을 실시하였다. 각 모형에 대하여 Bracket plane을 설정하였고, 각 치아에서 Bracket plane에 수직이며 치아의 장축을 지나는 Tooth plane을 순협면에서 결정한 뒤 Bracket plane상에서의 치관경사도를 계측하였다. 이로부터 Bracket plane을 상하로 0.5mm, 1.0mm, 1.5mm 변위시켰을 때의 치관경사도를 계측하였다. 각 계측 항목에 대해 일원분산분석 (oneway ANOVA)과 Duncan's multiple comparison test를 시행하였다. 이상의 연구로부터 다음과 같은 결과를 얻었다. 1. 상악중절치, 측절치, 견치, 대구치와 하악소구치, 대구치에 있어서 브라켓의 수직적 위치가 변화함에 따라 치관경사도가 통계적으로 유의성 있게 차이 있는 것으로 나타났다(p<0.05). 2. 상악전치와 대구치, 하악소구치와 대구치에서는 기준평면으로부터 수직적으로 같은 양만큼 변위되었다 할지라도 보다 교합면쪽에 위치하는지, 보다 치은쪽에 위치하는지에 따라 치관경사도의 변화량이 다르게 나타났다. 3. 브라켓의 수직적 위치변화가 있을 경우 상악전치부와 대구치, 하악구치부, 이 중 특히 하악구치부의 치관경사도는 임상적으로 영향을 받게 되므로 브라켓을 위치시킬 때 주의를 요해야 할 것으로 생각된다.
본 연구에서는 재배 방법, 토양 특성 등의 정보를 상세하게 수집하기 어려운 지역단위의 콩 작황을 작물생육 모델을 이용하여 예측하는 방법을 개발하고자 하였다. 작물 생육 모델은 DSSAT에 포함된 CROPGRO-Soybean 모델을 이용하였고, 미국의 주요 콩 생산지역인 Illinois주를 연구 사례지역으로 선택하였다. CROPGRO-Soybean 모델을 이용하여 Illinois주의 콩 수량을 예측하기 위한 첫 단계로 다양한 성숙군에 속하는 국내외 품종들을 수집하여 서울대학교농장($37.27^{\circ}N$, $126.99^{\circ}E$)에서 2년동안 파종기 실험을 하여 성숙군(maturity group) I~VI까지의 성숙군별 대표 품종모수(genetic coefficients)를 추정하였다. 대표 품종모수는 각 성숙군 내에 포함되어 있는 품종들의 발육을 매우 정확하게 추정하였다. $10km{\times}10km$ 격자 단위의 기상자료를 바탕으로 성숙군(3), 파종시기(3), 관개여부(2) 등을 조합하여 18가지 조건으로 2000년에서 2011년까지 수량을 각각 모의 하였다. 성숙군과 파종시기는 Illinois주를 위도에 따라 3등분하여 각각 다르게 설정하였다. 관개 및 무관개 조건으로 구분하여 격자 별 모의결과로부터 Illinois주 전체 평균 모의수량을 구하여 연도 별 통계 수량과 비교한 결과 두 경우 모두 실제 수량과 큰 차이를 보일 뿐만 아니라 연차에 따른 수량 변동과 증가 경향을 반영하지 못하였다. 이러한 한계를 극복하고자 처리 별 격자 별로 모의된 수량을 수량을 18개 모의 조건 별로 평균하여 구한 9개 농업지구의 연도별 수량을 독립 변수, 농업지구의 연도별 통계수량을 종속 변수로 하는 중회귀 모델을 구축하였다. 18개 모의 조건 별 수량 외에 품종 개량, 재배 기술 발전 등에 따른 수량의 연차적 변화경향을 반영하기 위하여 연도를 독립변수로 추가하였으며, 중회귀모델은 농업지구와 연도별 수량 변이를 비교적 잘 예측($R^2=0.61$, n=108)하였다. 중회귀 모델로 추정한 9개 농업지구의 연도별 수량을 농업지구별 재배 면적으로 가중 평균한 Illinois의 연도별 추정수량은 통계수량에 매우 근사하였다($R^2=0.80$). 뿐만 아니라 모델 구축 대상연도가 아니고 가뭄으로 수량이 크게 감소한 2012년의 예측 수량은 $3006kg\;ha^{-1}$로 통계수량 $2890kg\;ha^{-1}$과 $116kg\;ha^{-1}$의 근사한 차이를 보였다.
다중 플랫폼/센서를 활용한 연안 모니터링은 연안 해양환경 변화와 다양한 재해/재난을 높은 시공간 해상도로 정확하게 이해하기 위한 매우 중요한 수단이다. 하지만 다중 플랫폼과 센서를 복합적으로 이용한 통합 관측 연구는 미비한 실정이고, 통합 관측을 통한 효율성, 융합 한계성 등에 대해 평가된 바 없다. 본 연구에서는 다중 원격탐사 플랫폼/센서를 이용한 모의실험을 통해 통합 관측 방법을 제시하고, 그 효용성과 한계점을 진단하였다. 다양한 해양 재해, 재난을 모사하기 위하여 Rhodamine WT (RWT) 형광염료를 이용하여 통합 현장조사를 수행하였다. 2019년 9월 남해-여수 해역에 형광염료를 주입 후 위성(Kompsat-2/3/3A, Landsat-8 Operational Land Imager (OLI), Sentinel-3 Ocean and Land Colour Instrument (OLCI), GOCI), 무인항공기 (Mavic 2 pro, Inspire 2), 유인항공기 플랫폼을 이용하여 염료 패치의 분포와 이동을 탐지하였다. 형광염료 주입 초기 패치 규모는 2,600 ㎡ 이었고, 약 138분 후 62,000 ㎡ 규모까지 확산되었다. RWT 패치는 처음 주입된 지점으로 부터 점차 남서 방향으로 이동하였고, 이는 현장 모의 실험이 진행되는 동안 조위(고조: 7시 7분(286 cm), 저조: 13시 9분(73 cm))가 점차 낮아짐에 따라 조석이 남동 방향으로 흐르는 것과 유사하였다. 무인항공기 영상은 공간해상도와 시간해상도 측면에서 가장 높은 해상력을 보인 반면 탐지 영역이 가장 좁았다. 위성의 경우 탐지 영역은 넓었지만 재방문 주기가 길기 때문에 운용성 측면에서 타 플랫폼과 비교하여 다소 한계가 있었다. 또한 Sentinel-3 OLCI와 GOCI의 경우 분광해상도와 신호 대 잡음비(signal to noise ratio)가 가장 높았지만 소규모 형광염료 탐지에는 공간해상도 측면에서 제한적이었다. 유인항공기에 탑재된 초다분광 영상의 경우 분광해상도가 가장 높았지만 이 역시 운용성 측면에서 다소 제한적이었다. 다중 플랫폼 통합관측 연구를 통해 시간과 공간뿐만 아니라 분광 해상력 증가 향상을 확인 가능하였다. 향후 이 연구 결과가 연안 수치모델과 연계된다면 오염 물질의 이동확산 예측이 가능할 것으로 생각되고, 수치모델의 입력 및 검증 자료로 활용하여 모델 정확도 향상에 기여할 수 있을 것으로 기대된다.
일반적으로 사적(私的)영역에서 수집되는 기록물, 즉 매뉴스크립트는 물리적 상태가 불량하고 기록물의 전후 맥락과 생산이력에 대한 정보가 파편적으로 수집되는 경우가 대부분이다. 때문에 수집형 기록관에서는 다양한 경로로 수집되는 기록물에 대한 생산기관(생산자)명을 효과적으로 통제하고 기록물 생산배경을 이해할 때 핵심요소인 출처정보를 축적할 필요가 있다. 수집형 기록관에서 이러한 전거제어와 출처정보 관리는 수집부터 체계화되어야 하며, 이는 수집시 관리과정까지 고려하여 필요한 정보를 구축하는 것을 의미한다. 이 논문은 민주화운동기념사업회 사료관이 개발한 사료관리시스템 가운데 전거제어 방식을 소개함으로써 수집형 기록관의 전거제어 및 출처정보 축적의 필요성을 확인하고 기록물 전거시스템을 구축할 때 고려할 사항들을 제안하기 위한 것이다. 이를 위해 본 연구에서는 사료관리에서 전거제어의 필요성을 알아보고, 사료전거제어 기준과 실무절차, 구축과정에 대해 살펴보았다. 사료관 사료전거시스템의 특징은 수집, 등록, 기술 등 각 업무 흐름에 따라 전거를 제어하고 출처정보를 관리하여 이를 사료의 지적 관리와 검색도구로 이용한다는 것에 있다. 끝으로 이러한 전거관리 사례를 통해 국제표준인 ISAAR(CPF)를 준용하여 기관마다 적합한 형태로 기술요소를 재구성하고 전거파일 유형을 설정하여 표준적으로 관리해야 할 것을 제안함으로써 향후 수집형 기록관에서 기록물 전거시스템을 구축하는데 있어 참고할 수 있도록 하였다.
최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.
상수도 공급을 위한 정수장에서 전염소 또는 중염소 공정이 도입된 수처리 공정의 염소농도 관리에 필요한 공정제어를 위하여 AI 기술을 활용한 수질예측 기법이 연구되고 있다. 본 연구에서는 정수장 수처리 공정에서 실시간으로 관측, 생산되고 있는 수량·수질자료를 이용하여 염소소독 공정제어 자동화를 목적으로 침전지 후단의 잔류염소 농도를 예측하기 위한 AI 기반 예측모형을 개발하였다. AI 기반 예측모형은 과거 수질 관측자료를 학습하여 이후 시점의 수질에 대한 예측이 가능한 기법으로, 복잡한 물리·화학·생물학적 수질모형과 달리 간단하고 효율적이다. 다중회귀 모형과 AI 기반 모형인 랜덤포레스트와 LSTM을 이용하여 정수장의 침전지 후단 잔류염소 농도를 예측하여 비교하였다. 최적의 잔류염소 농도 예측을 위한 AI 모형의 입출력 구조로는 침전지 전단의 잔류염소 농도, 침전지 탁도, pH, 수온, 전기전도도, 원수의 유입량, 알칼리도, NH3 등을 독립변수로, 예측하고자 하는 침전지 유출수의 잔류염소 농도를 종속변수로 선정하였다. 독립변수는 침전지 후단의 잔류염소에 영향이 있는 정수장에서 확보가 가능한 관측자료중에서 분석을 통해 선별하였으며, 분석 결과 연구대상 정수장인 정수장에서는 중회귀모형, 신경망모형, 모델트리 및 랜덤포레스트 모형을 비교한 결과 랜덤포레스트에 기반한 모형오차가 가장 낮게 도출되는 결과를 얻을 수 있었다. 본 연구에서 제시하는 침전지 후단의 적정 잔류염소 농도 예측값은 이전 처리단계에서 염소주입량의 실시간 제어가 가능토록 할 수 있어 수처리 효율 향상과 약품비 절감에 도움이 될 것으로 기대된다.
최근 독감 예측이나 부동산가격 예측 등 다양한 분야에서 웹검색 트래픽이나 소셜 네트워크 등의 방대한 고객 데이터를 통해 사회 현상, 소비 트렌드 등을 분석하고자 하는 시도가 증가하고 있다. 최근 구글이나 네이버 등의 인터넷 포털서비스 업체들은 온라인 사용자들의 웹검색 트래픽 정보를 구글 트렌드, 네이버 트렌드 등의 서비스로 공개하고 있는데, 이들이 제공하는 웹검색 트래픽 정보를 기반으로 온라인 사용자들의 정보 검색 행태에 대한 연구들이 학계 업계 등에서 주목받고 있다. 웹검색 정보를 기반으로 사회 현상이나, 소비 동향, 정치 투표 결과 등을 예측해 볼 수 있음을 실증하고 있는 분야는 많은 연구가 수행되고 있지만, 웹검색 트래픽 정보를 이용하여, 소비자의 제품에 대한 중요한 속성 도출 및 소비자의 기대 변화 관측 등의 온라인 사용자 행태에 초점을 맞추어 연구되고 있는 분야는 상대적으로 많은 연구가 수행되고 있지는 않다. 따라서, 본 연구에서는 구글이나 네이버가 제공하는 소비자의 웹검색 트래픽을 활용해서 소비자가 생각하는 제품 포지션을 가시화할 수 있는 방법을 제안한다. 브랜드 간의 관계를 확인하기 위해, 동시 검색 트래픽 정보를 활용하여 네트워크 모델링의 방법을 사용한 시스템을 제안하고 있으며, 이를 통해 소비자들이 제품 간의 유사성을 어떻게 인지하고 형성하며, 새로운 혁신 제품 카테고리 내에서 제품 브랜드들이 소비자의 마음 속에서 어떻게 자리 잡고 있는지의 브랜드 포지셔닝을 확인할 수 있는 방법론을 제안하였다. 또한 이를 태블릿 PC의 사례를 통해서, 미시적인 관점에서 소비자의 마음속에 위치한 태블릿 PC 개별 브랜드들의 위치 및 관계를 보여주었다. 기업은 소비자의 제품에 대한 인식 및 중요 속성 도출을 위해 많은 비용과 시간을 소요하여 소비자 조사를 행하게 되는데, 본 연구의 방법론을 활용하여 소비자의 제품에 대한 인식, 제품간 유사도, 제품에 대한 중요 속성의 변화 등을 일반에게 공개된 검색 트래픽 정보를 활용하여 비교적 쉽고 추가적인 비용 없이 도출할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.