• Title/Summary/Keyword: Multiple Image Representation

Search Result 56, Processing Time 0.029 seconds

Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection

  • Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.210-220
    • /
    • 2020
  • Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF

Representation of Gray Level in the Image Processing Using Multiple Valued Logic (다치 논리를 이용한 영상 처리에서의 농도 표현)

  • 진상화;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.220-223
    • /
    • 1997
  • 다치 논리는 2치 논리에 비하여 동일 정보량을 처리하는데, 고속 처리가 가능하고, 정보의 기억 밀도가 크며, 논리 회로 실현시 입.출력 단자수가 감소하는 등의 장점을 가지고 있다. 본 논문에서는 이러한 다치 논리가 가지는 장점을 이용하여, 영상 처리시 필요한 농도를 2치가 아닌 다치로 농도표현을 하고자 한다.

  • PDF

The Iconography of Femininity in Pre-Raphaelite Painting

  • Choe, Jian
    • English & American cultural studies
    • /
    • v.14 no.1
    • /
    • pp.269-286
    • /
    • 2014
  • The Pre-Raphaelite oeuvre abounds in the image of women, which indicates the impact of gender question on contemporary visual culture. The representation of women in their art tends to evince the entrenched myth of womanhood, marked by a stereotyped dichotomy in the apprehension of femininity. Yet there are a significant number of pictures which attest to the point that their iconography of womanhood cannot be fully elucidated by exploring the dichotomy alone. They falsify the dyadic model, defying the attempt to accommodate them in a clean-cut category. The curious blend of the mystical, the sensual, and the domestic that characterizes these images suggests that they are open to multiple interpretations. In sum, the Pre-Raphaelite representation of women both endorses and challenges the ideal of femininity, indicating that it was shaped by and shaped contemporary perceptions of women at a time when gender relations were shifting and the traditional institution of patriarchy revealed a sign of strain.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Implementation of Image Semantic Segmentation on Android Device using Deep Learning (딥-러닝을 활용한 안드로이드 플랫폼에서의 이미지 시맨틱 분할 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.88-91
    • /
    • 2020
  • Image segmentation is the task of partitioning an image into multiple sets of pixels based on some characteristics. The objective is to simplify the image into a representation that is more meaningful and easier to analyze. In this paper, we apply deep-learning to pre-train the learning model, and implement an algorithm that performs image segmentation in real time by extracting frames for the stream input from the Android device. Based on the open source of DeepLab-v3+ implemented in Tensorflow, some convolution filters are modified to improve real-time operation on the Android platform.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Transfer Learning based on Adaboost for Feature Selection from Multiple ConvNet Layer Features (다중 신경망 레이어에서 특징점을 선택하기 위한 전이 학습 기반의 AdaBoost 기법)

  • Alikhanov, Jumabek;Ga, Myeong Hyeon;Ko, Seunghyun;Jo, Geun-Sik
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.633-635
    • /
    • 2016
  • Convolutional Networks (ConvNets) are powerful models that learn hierarchies of visual features, which could also be used to obtain image representations for transfer learning. The basic pipeline for transfer learning is to first train a ConvNet on a large dataset (source task) and then use feed-forward units activation of the trained ConvNet as image representation for smaller datasets (target task). Our key contribution is to demonstrate superior performance of multiple ConvNet layer features over single ConvNet layer features. Combining multiple ConvNet layer features will result in more complex feature space with some features being repetitive. This requires some form of feature selection. We use AdaBoost with single stumps to implicitly select only distinct features that are useful towards classification from concatenated ConvNet features. Experimental results show that using multiple ConvNet layer activation features instead of single ConvNet layer features consistently will produce superior performance. Improvements becomes significant as we increase the distance between source task and the target task.

Representation of Translucent Objects using Multiple Projection Images for Real-time Rendering (시점을 달리한 여러 장의 투영 영상을 이용한 반투명 재질의 실시간 렌더링)

  • Lee, Jae-Young;Kim, Kang-Yeon;Yoo, Jae-Doug;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.878-883
    • /
    • 2006
  • 반투명 물체(Translucent Object)는 불투명한 물체와는 달리 물체 내부에서 산란이 일어난다. 반투명 물체의 한 표면(Surface)을 렌더링하기 위해서는 그 표면의 정규 벡터뿐만 아니라 그 표면의 주변 기하 정보가 필요하다. 그러나 그래픽 하드웨어 구조는 반투명 물체의 실시간 렌더링의 구현에 많은 제약을 준다. 3D 기하 정보 대신에 라디언스 맵(Radiance map)과 깊이 맵(Depth map)과 같은 투영 영상(Projected Image)을 기반으로 하는 영상 공간 접근 방법(Image Space Approach)을 사용함으로써 GPU 상에서 반투명 재질을 실시간으로 표현할 수 있다. 본 논문에서는 영상 공간 접근 방법(Image Space Approach)의 연장선에서 시점을 달리한 여러 장의 투영 영상을 이용함으로써 기존의 한 장의 투영 영상만을 이용한 방법이 가지고 있는 가시성 한계점을 해결한다. 또한 복수 투영 영상의 이용에 따른 계산량 증가에 의해서 손실된 프레임 속도(Frame Rate)에 대해 분석한다.

  • PDF

Content Based Image Retrieval using 8AB Representation of Spatial Relations between Objects (객체 위치 관계의 8AB 표현을 이용한 내용 기반 영상 검색 기법)

  • Joo, Chan-Hye;Chung, Chin-Wan;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.304-314
    • /
    • 2007
  • Content Based Image Retrieval (CBIR) is to store and retrieve images using the feature description of image contents. In order to support more accurate image retrieval, it has become necessary to develop features that can effectively describe image contents. The commonly used low-level features, such as color, texture, and shape features may not be directly mapped to human visual perception. In addition, such features cannot effectively describe a single image that contains multiple objects of interest. As a result, the research on feature descriptions has shifted to focus on higher-level features, which support representations more similar to human visual perception like spatial relationships between objects. Nevertheless, the prior works on the representation of spatial relations still have shortcomings, particularly with respect to supporting rotational invariance, Rotational invariance is a key requirement for a feature description to provide robust and accurate retrieval of images. This paper proposes a high-level feature named 8AB (8 Angular Bin) that effectively describes the spatial relations of objects in an image while providing rotational invariance. With this representation, a similarity calculation and a retrieval technique are also proposed. In addition, this paper proposes a search-space pruning technique, which supports efficient image retrieval using the 8AB feature. The 8AB feature is incorporated into a CBIR system, and the experiments over both real and synthetic image sets show the effectiveness of 8AB as a high-level feature and the efficiency of the pruning technique.