• Title/Summary/Keyword: Multiple Diffraction

Search Result 114, Processing Time 0.021 seconds

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films (다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해)

  • Khan, Shenawar Ali;Zafar, Muhammad;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.

Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures (Al0.3Ga0.7N/GaN 및 Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN 이종접합 구조에서 운반자 구속 효과와 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Cho, H.E.;Lee, J.H.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • We have investigated optical and structural properties of $Al_{0.3}Ga_{0.7}N$/GaN and $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ heterostructures (HSs) grown by metal-organic chemical vapor deposition, by means of Hall measurement, high-resolution X-ray diffraction, and temperature- and excitation power-dependent photoluminescence (PL) spectroscopy. A strong GaN band edge emission and its longitudinal optical phonon replicas were observed for all the samples. At 10 K, a 2DEG-related PL peak located at ${\sim}\;3.445\;eV$ was observed for $Al_{0.3}Ga_{0.7}N$/GaN HS, while two 2DEG peaks at ${\sim}\;3.42$ and ${\sim}\;3.445\;eV$ were observed for $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS due to the additional $Al_{0.15}Ga_{0.85}N$ layers. Moreover, the emission intensity of the 2DEG peak was higher in $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS than in $Al_{0.3}Ga_{0.7}N$/GaN HS probably due to an effective confinement of the photo-excited holes by the additional $Al_{0.15}Ga_{0.85}N$ layers. The 2DEG-related emission intensity decreased with increasing temperature and disappeared at temperatures above 150 K. To investigate the origin of the new 2DEG peaks, the energy-band structure for multiple AlGaN/GaN HSs were simulated and compared with the experimental data. As a result, the observed high- and low-energy peaks of 2DEG can be attributed to the spatially-separated 2DEG emissions formed at different AlGaN/GaN heterointerfaces.