• Title/Summary/Keyword: Multiphysics

Search Result 176, Processing Time 0.026 seconds

The Effect of Electrolyte Types on the Electrochemical Polishing Induced Martensitic Transformation of Metastable Austenite Stainless Steel (전해액 종류에 따른 준안정 오스테나이트계 스테인리스강의 전해연마 유기 마르텐사이트 상변태에 미치는 영향)

  • J. Chae;C. Jeong;H. J. Cho;H. Lee;S. J. Kim;H. N. Han
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.191-198
    • /
    • 2023
  • We examined the martensitic transformation kinetics for metastable stainless steel during electrochemical polishing (EP) using different types of electrolytes. Martensite fraction measured with EBSD showed that the electrolyte with high relative permittivity exhibited comparably higher levels of martensitic transformation. The amount of charge build-up on the specimen surface during EP with different types of electrolytes was calculated using COMSOL multiphysics simulations to understand these phase transformation characteristics. The effect of charge build-up-induced stress was analyzed using previously published first-principles calculations. We discovered that the electrolyte with high relative permittivity accumulated a greater amount of charge build-up, resulting in a stronger driving force for stress-induced martensitic transformation.

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Hyungju Yun;Min-Seok Kim;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.517-529
    • /
    • 2023
  • The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.

Supplementation of Tire Strain Sensor Performance by FEM Simulation Program (FEM 시뮬레이션 프로그램을 이용한 타이어 변형률 센서 성능 보완)

  • Kim, JongInn;Choi, BumKyoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1237-1238
    • /
    • 2015
  • 이 논문은 타이어 변형량을 측정하는 변형량 센서의 시제품을 modeling하여 COMSOL Multiphysics FEM 해석 프로그램을 통해 시뮬레이션을 수행한 것을 다룬 것이다. 센서의 구조 중에 센서의 성능에 큰 영향력을 미치는 구조를 변수로 잡아 각 변수에 따른 센서의 capacitance의 linearity와 sensitivity을 시뮬레이션을 통해 도출했다. 도출한 값을 토대로 센서 구조에 대한 최적의 범위를 구하고 센서의 시제품의 구조 변수의 값이 이 범위 내에 있는 것을 보여 시제품의 성능에 대한 검증했다.

  • PDF

A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage

  • Ekh, Magnus;Bargmann, Swantje
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.171-188
    • /
    • 2016
  • Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermoplasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is that of finite strains. Numerical results on single-crystalline metal showing the development of damage conclude the paper.

Development of a Plasma Training Lab kart: System Setup and Numerical Simulation

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.195-200
    • /
    • 2017
  • A mobile lab kart for plasma training is developed with a high vacuum pumping system, vacuum gauges and a glass discharge tube powered by a high voltage transformer connected to a household 60 Hz line. A numerical model is developed by using a commercial multiphysics software package, CFD-ACE+ to analyze the experimental data. Simulations for argon and nitrogen were carried out to provide fundamental discharge characteristics. Variations of the kart configuration were demonstrated: a glass tube with three electric probes, optical emission spectrometer attachment and infra red thermal imaging system to give more detailed analysis of the discharge characteristics.

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

A CFD Analysis Study on the Characteristics of Hydrogen Production by High Temperature Steam Electrolysis(HTSE) Using High Temperature Heat (고온열을 이용한 고온수증기전기분해장치(HTSE)에 의한 수소생산 특성에 관한 전산유체해석적 연구)

  • Han, Won-Hui;Choi, Jung-Sik;Yoon, Seok-Hun;Yoon, Doo-Ho;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2011
  • The characteristics for hydrogen production and the thermochemical properties of high temperature steam electrolysis(HTSE) device have been numerically analyzed in a two-dimension, steady-state with using the COMSOL $Multiphysics^{(R)}$. The main parameters for the calculation are applied voltage, ASR(Area-specific Resistance), temperature and pressure of the inlet gas flow. The results showed that thermal-neutral voltage was 1.2454 V and rather than the cell temperature increases or decreases with increasing applied voltage by thermal-neutral voltage starting this voltage the temperature in high voltage tended to rise and temperature in the low voltage tended to fall. And with, increasing the values of ASR, temperature inside the cell and the hydrogen production rate were decreased.