• Title/Summary/Keyword: Multiphase image segmentation

Search Result 4, Processing Time 0.02 seconds

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H.;Kim, T.S.;Kim, Y.H.;Ahn, Y.B.;Lee, Y.K.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.713-720
    • /
    • 2007
  • In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.

Segmentation and Visualization of Left Ventricle in MR Cardiac Images (자기공명심장영상의 좌심실 분할과 가시화)

  • 정성택;신일홍;권민정;박현욱
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • This paper presents a segmentation algorithm to extract endocardial contour and epicardial contour of left ventricle in MR Cardiac images. The algorithm is based on a generalized gradient vector flow(GGVF) snake and a prediction of initial contour(PIC). Especially. the proposed algorithm uses physical characteristics of endocardial and epicardial contours, cross profile correlation matching(CPCM), and a mixed interpolation model. In the experiment, the proposed method is applied to short axis MR cardiac image set, which are obtained by Siemens, Medinus, and GE MRI Systems. The experimental results show that the proposed algorithm can extract acceptable epicardial and endocardial walls. We calculate quantitative parameters from the segmented results, which are displayed graphically. The segmented left vents role is visualized volumetrically by surface rendering. The proposed algorithm is implemented on Windows environment using Visual C ++.