• Title/Summary/Keyword: Multipath environment

Search Result 337, Processing Time 0.03 seconds

An Estimation Technique of Cell ID and DoA for a Mobile Relay Station Under a Multipath Channel (다중 경로 채널에서의 이동 릴레이의 셀 탐색 및 DoA 추정 방법)

  • Pec, Rothna;Kim, In Su;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.58-67
    • /
    • 2013
  • In this paper, a mobile relay station(MRS) for vehicles with a beamforming antenna is considered to increase the reliability of a transmission link, especially for the MRS at cell boundary. Cell searching and direction-of-arrival(DoA) estimation methods for an MRS with a uniform linear array(ULA) are proposed for a multipath environment in OFDM-based cellular systems. Performances of the proposed methods(Method1 and Method2) are evaluated by computer simulation with the standard profile of IEEE 802.16e.

Performance Experimentation and an Optimal Iterative Coding Algorithm for Underwater Acoustic Communication (수중음향통신에서 최적의 반복부호 알고리즘 및 성능 실험)

  • Park, Gun-Yeol;Lim, Byeong-Su;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2397-2404
    • /
    • 2012
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Among the iterative coding scheme, turbo codes and LDPC codes are dominant channel coding schemes in recent. This paper concluded that turbo coding scheme is optimal for underwater communications system in aspect to performance, coded word length, and equalizer combining. Also, decision directed phase recovery was used for correcting phase offset induced by multipath. Based on these algorithms, we confirmed the performance in the environment of oceanic experimentation.

A Study on Efficient Packet Design for Underwater Acoustic Communication (수중음향통신에서 효율적인 패킷 설계에 관한 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.631-635
    • /
    • 2012
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, in order to design an efficient packet structure, we employ channel coding scheme and phase recovery algorithm. For channel coding scheme, half rate LDPC channel coding scheme with N=1944 and K=972 was used. Also, decision directed phase recovery was used for correcting phase offset induced by multipath. Based on these algorithms, we propose length of data for optimal packet structure in the environment of oceanic experimentation.

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Channel Transfer Function Estimation based on Delay and Doppler Profile for Underwater Acoustic OFDM Communication System

  • Shiho, Oshiro;Tomohisa, Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2023
  • In this paper, we proposed Channel Transfer Function estimation based on Delay and Doppler Profile for underwater acoustic OFDM communication system. It improved the estimation accuracy of the channel transfer function by linear time interpolation the change of Scattered Pilot (SP) insertion frequency in the time direction and the time by Delay and Doppler profile that analyzes the multipath situation of the channel investigated the performance of interpolation by simulation and report it. Previous works is inserted SP every 4 OFDM. It was effective under the environment without multipath, but it has observed that the effect of CTF compensation has been lowered in multipath channel condition. In addition to be better when inserted SP every 2 OFDM. But the amount of sending data will be decrease. Therefore, we conducted research to improve 4 OFDM with new interpolator. A computer simulation was performed as a comparison of SP inserted every 4 OFDM, SP inserted every 2 OFDM, and 4 OFDM with new interpolator. the performance of the proposed system is overwhelmingly improved, and the performance is slightly improved even 64 QAM.

Underwater acoustic communication performance in reverberant water tank (잔향음 우세 수조 환경에서의 수중음향 통신성능 분석)

  • Choi, Kang-Hoon;Hwang, In-Seong;Lee, Sangkug;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.184-191
    • /
    • 2022
  • Underwater acoustic wave in shallow water is propagated through multipath that has a large delay spread causing Inter-Symbol Interference (ISI) and these characteristics deteriorate the performance in the communication system. In order to analyze the communication performance and investigate the correlation with multipath delay spread in a reverberant environment, an underwater acoustic communication experiment using Binary Phase-Shift Keying (BPSK) signals with symbol rates from 100 sym/s to 8000 sym/s was conducted in a 5 × 5 × 5 m3 water tank. The acoustic channels in a well-controlled tank environment had the characteristics of dense multipath delay spread due to multiple reflections from the interfaces and walls within the tank and showed the maximum excess delay of 40 ms or less, and the Root Mean Squared (RMS) delay spread of 8 ms or less. In this paper, the performances of Bit Error Rate (BER) and output Signal-to-Noise Ratio (SNR) were analyzed using four types of communication demodulation techniques. And the parameter, Symbol interval to Delay spread Ratio in reverberant environment (SDRrev), which is the ratio of symbol interval to RMS delay spread in the reverberant environment is defined. Finally, the SDRrev was compared to the BER and the output SNR. The results present the reference symbol rate in which high communication performance can be guaranteed.

Analysis of Performance of Digital Retrodirective Antenna Technology in High-Speed Rail (고속 철도 환경에서의 디지털 역지향성 안테나 기술 성능 분석)

  • Bok, Junyeong;Lee, Seung Hwan;Shin, Dong Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1264-1271
    • /
    • 2012
  • Fast tracking is important for high-speed data transmission in high-speed mobile environment such as high speed rail and vehicular. Digital retrodirective array antenna is possible to do automatically beam tracking because it can control the phase information of the output signal toward opposite direction to input signal without no a priori knowledge of the arrival direction. Also, Digital retrodirective array antennas has merit that it is easy to upgrade and modify compare with analogue retrodirective array antennas. In this paper, we analyze the BER performance of digital retrodirective array antenna under AWGN environment and multipath signal. Simulation results show correct phase estimation and conjugation of retrodirective array antenna by using phase detector block. Also, phase conjugation technique has better BER performance about 1 dB at source than that of without phase conjugation when phase lag is $15^{\circ}$ in AWGN environment. This paper also discusses effect of the presence of multipath signal. Phase and amplitude error about direction of direct signal occurs when retrodirective array system is affected by interference and multipath signal in the presence of multipath signal.

A Novel BOC Signal Synchronization Scheme for Maritime Satellite Communications (해양 위성 통신을 위한 BOC 신호와 새로운 동기화 기법)

  • Kim, Jun-Hwan;Lee, Young-Yoon;Yoon, Seok-Ho;Choi, Myeong-Soo;Lee, Yeon-Woo;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.566-572
    • /
    • 2011
  • The satellite communication is an important method for maritime communications. Binary offset carrier (BOC) signal is a promising candidate of next generation global navigation satellite systems (GNSS). Synchronization of BOC signal is one of the most important processes to demodulate BOC signal in GNSS. However, in maritime environment, the synchronization of BOC signal is suffered from the problem of side-peak of BOC autocorrelation function and multipath fading caused by the sea surface reflection. In this paper, we proposed a novel synchronization scheme which can eliminate side-peak perfectly and is robust in multipath channel. Simulation results show that the proposed scheme has better performance than conventional schemes in multipath channel.

Performance Analysis of DS/SS System with PLL Gain in the Multipath Fading Channel (다중경로 페이딩 채널하에서 PLL이득에 따른 DS/SS시스템의 성능분석)

  • Kang, Chan-Seok;Park, Jin-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, we modelized the multipath fading to Nakagami-m distribution fading channel which can be applied to the extended mobile communication channel environment. We assumed that the phase difference with reference signal happened in the received signal and in the receiver PLL(Phase Locked Loop) is the phase error. To correct the error we propose new RAKE receiver using PLL. In addition, we analyze the performance of DS/SS(Direct Sequence/spread Spectrum) system according to the gain of PLL,$\gamma_n$, the number of RAKE receiver branch L and MIP(Multipath Intensity Profile)'s exponential decay $\delta$. As a result, when the proposed RAKE receiver L Is increased and the $\delta$ is decreased the performance of the system gets better. Futhermore when PLL gain was 30dB, phase is identified. That is when the PLL gain is 30dB, the performance equals with the perfect coherent system's. Therefore, we can correct the phase error by using the proposed RAKE receiver and we proved that the PLL's requested limit gain should be 30dB.

  • PDF

Performance Analysis of MC-DS-CDMA System Using a Interference Suppression Method in a Multipath Fading Channel (다중 경로 페이딩 채널 환경에서 다중반송파 DS-CDMA 시스템의 간섭 제거 성능 분석)

  • Park Tae-Yoon;Choi Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.745-751
    • /
    • 2002
  • The performance of existing CDMA-type multiple access data transmission systems is limited by interferences due to adverse mobile communication channel characteristics. Among them, the multi-user interference becomes one of the major performance degradation factors because the signal-to-signal orthogonality can be easily perturbed when numerous user signals are distorted by multipath fading channels and mixed together. In order to enhance the performance of CDMA-type systems by suppressing the multi-user interference, we have adopted chip-based cyclic prefix insertion along with adaptive one-tap DFE equalization into MC-DS-CDMA, which is known for its robustness in the frequency selective multipath fading channel environment. In order to assess the performance of the proposed system, a set of computer simulations is performed in the reverse link in which each user signal undergoes different multipath Rayleigh fading. The results show us a superior performance of our system over other CDMA systems in terms of SNR to BER measurements.