• Title/Summary/Keyword: Multipath environment

Search Result 337, Processing Time 0.031 seconds

Performance Analysis of DS/CDMA Communication System with MRC Diversity and CCI Canceller in Nakagami Fading Environment (나카가미 페이딩 환경하에서 MRC 다이버시티와 간섭제거기를 채용한 DS/CDMA 통신 시스템의 성능 분석)

  • 소준영;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1010-1021
    • /
    • 1999
  • In this paper, error performance of DS/CDMA GMSK system has been analyzed in a radio channel which is characterized by multi-user interference(MUI) and Nakagami fading. The DS/CDMA GMSK system adopts Maximum Ratio Combining(MRC) diversity and co-channel interference (CCI) to enhance system performance. Using the derived error probability equation, the error performance of DS/CDMA GMSK system has been evaluated and shown in figures to discuss as a function of PN code length(N), number of multi-user(K), number of diversity branch(L), and bit energy per noise power ratio ($E_b/N_0$), fading index(m). The results show that there is a substantial enhancement in performance by employing an MRC diversity or a CCI canceller. Additional improvement can be obtained when the MRC diversity and the CCI canceller are adopted in cascade form. Consequently, we expected that proposed system structure is reliable to the voice communication system in Nakagami fading, multi-user interferences and multipath channel.

  • PDF

Aeronautical Link Availability Analysis for the Multi-Platform Image & Intelligence Common Data Link (다중 플랫폼 영상정보용 공용 데이터링크의 링크 가용도 성능 분석)

  • Ryu, Young-Jae;Ryu, Jung-Hun;Pak, Ui-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.965-976
    • /
    • 2012
  • Multi-Platform Image and Intelligence Common data link(MPI-CDL) systems are designed to transmit the imaginary and signal intelligence data at an aeronautical to ground line of sight(LOS) link. This paper proposes a method to predict a link availability and analyzes the required link margin to satisfy a given link availability for MPI-CDL systems. To estimate a link availability the proposed method applies the conditional probability so that both a rain attenuation and a multipath fading are considered simultaneously. Link margins to meet the link availability for MPI-CDL systems are calculated according to an operating environment including frequencies, flight altitudes and transmission ranges. The required link margins for actual unmanned air vehicle systems are also given by simulation results.

Performance Analysis of a Dense Device to Device Network

  • Kim, Seung-Yeon;Lim, Chi-Hun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2967-2981
    • /
    • 2014
  • Device-to-Device (D2D) communication is a technology component for long-term evolution-advanced (LTE-A). In D2D communication, users in close proximity to each other can communicate directly without going through a base station; such direct communication can improve spectral efficiency. Although D2D communication brings improvement in spectral efficiency, it also causes interference to the cellular network as a result of spectrum sharing. In particularly, D2D communication can generate interference for each D2D pair when the common wireless medium in a co-located limited area is accessed. Even though the interference management for between the D2D pair and cellular networks has been proposed, the interference reducing methods have still not been fully studied for the D2D pairs. In this paper, we investigate the problem of D2D pair coexistence in which interference is considered between D2D pairs. Using a signal to interference model for a target D2D pair, we provide an analysis of the aggregated throughput of a dense D2D network. For a target D2D pair, we assume that the desired signal and interference signals obey multipath fading and shadow fading. Through analysis, we demonstrate the effect of cluster size such as the number of D2D pairs and the size of the considered area on the network performance. The analytical results are compared with computer simulations. Our work can be used for a rough guideline for controlling the system throughput in a dense D2D network environment.

Cooperative Communications Based on Virtual MIMO Transmission for Vehicles (네트워크 코딩을 활용한 가상 다중 안테나 시스템 기반 차량용 협력 통신 기술)

  • Kim, Ilhwan;Kim, Junghyun;Ji, Soonbae;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, we propose a cooperative vehicle communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving vehicle networks. The proposed scheme uses a Network coding scheme for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. Simulation results have shown that the proposed scheme also provides alleviated Inter Symbol Interference(ISI) and Inter Channel Interference(ICI) as well as Signal-to-Noise Ratio(SNR) improvement and improve 3dB compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of Ultra-Wideband(UWB) communication system to show validity by using the MATLAB.

A Study on the Time Delay Compensate Algorithm in Uniform Linear Array Antenna on Radar System (레이더시스템의 등 간격 선형 배열 안테나에서 시간 지연 보상 알고리즘 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.434-439
    • /
    • 2019
  • This paper proposed a control algorithm to compensate the delay time to improve the signal to noise, and the proposed control algorithm estimate the target information to apply the continuous wave radar equation. The proposed control algorithm improves the output signal of each array element bv multiplying the weight of the receive signal to the signal to noise ratio. Radar radiate a signal in spatial and the target information is estimated by the echoed signal from the target. But the signal in the wireless communication environment occurs the delay time due to the multipath which appear human and natural structures. It is difficult to accurately estimate the desired information because of the degradation for the system performance due to the interference signal and the signal distortion. The target information can be improved by compensating the delay signal to apply the weight to the received signal by using the uniform linear array antenna. As a simulation result, we show that the performance of the proposed control algorithm and the non-compensated delay time are compared. The proposed control algorithm proved that the target distance estimation information is improved.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

RF ENVIRONMENT TEST ON A PROPOSED SITE FOR THE SENSOR STATION OF THE NEXT GENERATION SATELLITE NAVIGATION SYSTEM, GALILEO: II. THE RESULT OF THE TEST ON THE CANDIDATE SITE IN THE YEAR OF 2007 BY KASI AND ESA (차세대 위성항법체계 갈릴레오 센서스테이션 유치 후보지 전파 수신환경 조사: II. 실제 예정 부지에 대한 2007년 한국천문연구원과 ESA 공동조사 결과)

  • Jo, Jung-Hyun;Comte, Michel;Gonzalez, Moises;Park, Jong-Uk;Lee, Chang-Hoon;Park, Phil-Ho;Hwang, Jung-Wook;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • A RF environmental field test for the proposed Galileo Sensor Station site was done by Alcatel Alenia technical team contracted by European Space Agency (ESA) and the Space Geodesy division of Korea Astronomy and Space Science Institute at the Korean VLBI Hetwork (KVN) site in Tamla University Campus, Jeju from June 21, 2007 to June 24, 2007. Full band and in-band 24 hour observation for radio frequency interference, precise positioning, and multipath on three proposed antenna locations for Galileo signal were executed. The main purpose of this survey is to verify the results of previous test on 2006 by KASI. The preliminary analysis of the results and a full investigation also had been done by ESA under the permission of KASI until the end of July, 2007.

Interconnection Scheme for Multiple Path Source Routing Protocol for Wireless Mobile Ad-hoc Network and Mobile-IP (무선 이동 애드-혹 네트워크를 위한 다중 경로 소스 라우팅 프로토콜과 Mobile-IP의 연동 기법)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1031-1038
    • /
    • 2005
  • As the research on home network technologies, sensor network technologies, and ubiquitous network technologies makes rapid progresses, wireless ad-hoc network have attracted a lot of attention. A wireless ad-hoc network is a temporary network formed by a collection of wireless mobile nodes without the aid of my existing network infrastructure or centralized administration, and it is suitable for ubiquitous computing environments. In this paper, we suggest an interconnection scheme between the wireless ad-hoc network environment based on multiple path source routing protocol and a Mobile-IP based network environment. This scheme reduces the overhead of route re-establishment and re-registration by maintaining multiple paths between the mobile host in wireless ad-hoc network and the base station in mobile-IP network. Also it puts the base station in charge of function that performs translation between wireless ad-hoc network packets and Mobile-IP packets, reducing the load of mobile hosts. In this paper, our simulations show that our scheme outperforms existing interconnecting schemes with regards to throughput and end-to-end delay Also we show that our scheme outperforms multi-paths approach using disjoint routes with regards to routing overhead.

Virtual Satellite and Virtual Range Measurement Generation for the GNSS Position Accuracy Improvement (사용자 위치해 정확도 향상을 위한 가상위성 및 가상거리측정값 생성)

  • Song, Choongwon;Ahn, Jongsun;Choi, Moonseok;Jang, JinHyeok;Heo, MoonBeom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.757-765
    • /
    • 2017
  • GNSS (Global Navigation Satellite System) Position Accuracy depends on pseudo-range measurement and DOP (Dilution Of Precision) which indicates about navigation satellite geometry. Pseudo-Range has many error sources such as satellite clock, orbit, ionosphere, troposphere, multipath and so on. For the improvement of the accuracy, user can use corrected pseudo-range in DGPS (Differential Global Positioning System), which is one of the relative positioning methods. But, stationary station is needed in relative positioning. In case of DOP, Signal reception environment is important. If receiver sets in the center of city, it could be interrupted reception by buildings. This environment leads to decrease the number of visible satellites and to increase DOP. This paper proposes the concept of GNSS positioning with virtual satellites which have usable VRM (Virtual Range Measurement). Via virtual satellites and VRM, users could get an accurate position. Especially referred virtual satellites constellation has an effect on vertical error.