• Title/Summary/Keyword: Multiobjective Design Optimization

Search Result 60, Processing Time 0.032 seconds

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.

Structural Dynamic Optimization Using a Genetic Algorithm(GA) (유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화)

  • 이영우;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF

Shape Optimization of Truss Structures with Multiobjective Function by α -Cut Approach (α -절단법에 의한 다목적함수를 갖는 트러스 구조물의 형상최적화)

  • Yang, Chang Yong;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.457-465
    • /
    • 1997
  • The Shape optimization makes it possible to reduce the weight of structure and cost then member sizing optimization. A vast amount of imprecise information is existed in constraints of the optimum design. It is very difficult and sometimes confusing to describe and to deal with the several criteria which contain fuzzy degrees of relatives importance. This paper proposed weighting strategies in the multiobjective shape optimization of fuzzy structural system by ${\alpha}$-cut approach. The algorithm in this research is numerically tested for 2-bar truss structure. The result show that. the user can choose the one optimum solution in practices as obtaining the optimum solutions according to the ${\alpha}$-cut approach, weight of volume and displacement.

  • PDF

Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA) (유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화)

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

Applications of the Multiobjective Optimization Method in Main Particular Selection (선박의 주요치수 선정에 있어서 다목적함수 최적화의 응용)

  • Dong-Kon Lee;Soo-Young Kim;Soo-Chul Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 1995
  • In this paper, main particulars of a ship are optimized by the multiobjective optimization method which can offer more information to designer. To analyze the effect of a ship building cost and operating cost in the optimum design of a ship, the multiobjective optimization is performed with objective functions of building and operating costs. And Required Freight Rate(RFR) is also calculated as dependent variable. The design model was developed for the Liquefied Natural Gas(LNG) carrier with longer operating distance. The LNG carrier has some characteristics such as higher speed and building cost in comparison with other commercial ships.

  • PDF

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Pareto optimum design of laminated composite truncated circular conical shells

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.397-408
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite truncated circular conical shells subjected to external uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and boundary conditions on the optimal design is investigated and the results are compared.

Optimization of Train Working Plan based on Multiobjective Bi-level Programming Model

  • Hai, Xiaowei;Zhao, Chanchan
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.487-498
    • /
    • 2018
  • The purpose of the high-speed railway construction is to better satisfy passenger travel demands. Accordingly, the design of the train working plan must also take a full account of the interests of passengers. Aiming at problems, such as the complex transport organization and different speed trains coexisting, combined with the existing research on the train working plan optimization model, the multiobjective bi-level programming model of the high-speed railway passenger train working plan was established. This model considers the interests of passengers as the center and also takes into account the interests of railway transport enterprises. Specifically, passenger travel cost and travel time minimizations are both considered as the objectives of upper-level programming, whereas railway enterprise profit maximization is regarded as the objective of the lower-level programming. The model solution algorithm based on genetic algorithm was proposed. Through an example analysis, the feasibility and rationality of the model and algorithm were proved.