최근 인간의 뇌를 모방하여 정보를 학습하고 처리하는 뉴로모픽 기술에 대한 연구는 꾸준히 진행되고 있다. 뉴로모픽 시스템의 하드웨어 구현은 다수의 간단한 연산절차와 고도의 병렬처리 구조로 구성이 가능하여, 처리속도, 전력소비, 저 복잡도 구현 측면에서 상당한 이점을 가진다. 또한 저 전력, 소형 임베디드 시스템에 적용 가능한 뉴로모픽 기술에 대한 연구가 급증하고 있으며, 정확도 손실 없이 저 복잡도 구현을 위해서는 입력데이터의 차원축소 기술이 필수적이다. 본 논문은 멀티모달 센서 데이터를 처리하기 위해 멀티모달 센서 시스템, 다수의 뉴론 엔진, 뉴론 엔진 컨트롤러 등으로 구성된 경량 인공지능 엔진과 특징추출기를 설계 하였으며, 이를 위한 병렬 뉴론 엔진 구조를 제안하였다. 설계한 인공지능 엔진, 특징 추출기, Micro Controller Unit(MCU)를 연동하여 제안한 경량 인공지능 엔진의 성능 검증을 진행하였다.
주행 중에 발생하는 졸음은 큰 사고로 직결될 수 있는 매우 위험한 운전자 상태이다. 졸음을 방지하기 위하여 운전자의 상태를 파악하는 전통적인 졸음 감지 방법들이 존재하지만 운전자들이 가지는 개개인의 특성을 모두 반영한 일반화 된 운전자 상태 인식에는 한계가 있다. 최근에는 운전자의 상태를 인식하기 위한 딥 러닝기반의 상태인식 연구들이 제안되었다. 딥 러닝은 인간이 아닌 기계가 특징을 추출하여 보다 일반화된 인식모델을 도출할 수 있는 장점이 있다. 본 연구에서는 운전자의 상태를 파악하기 위해 이미지와 PPG를 동시에 학습하여 기존 딥 러닝 방식보다 정확한 상태 인식 모델을 제안한다. 본 논문은 운전자의 이미지와 PPG 데이터가 졸음 감지에 어떤 영향을 미치는지, 함께 사용되었을 때 학습 모델의 성능을 향상시키는지 실험을 통해 확인하였다. 이미지만을 사용했을 때 보다 이미지와 PPG를 함께 사용하였을 때 3%내외의 정확도 향상을 확인했다. 또한, 운전자의 상태를 세 가지로 분류하는 멀티모달 딥 러닝 기반의 모델을 96%의 분류 정확도를 보였다.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.713-718
/
1998
The paper is part of an investigation by the authors on development of a knowledge based frame work for multimodal medical image in collaboration with the All India Institute of Medical Science, new Delhi. After presenting the key aspects of the Dempster-Shafer Evidence theory we have presented implementation of registration and fusion of T₁and T₂ weighted MR images and CT images of the brain of an Alzheimer's patient for minimising the uncertainty and increasing the reliability for dianostics and therapeutic planning.
Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.
In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.
Communications for Statistical Applications and Methods
/
제14권3호
/
pp.517-530
/
2007
We studied a modelling process for unimodal and multimodal circular data by using von Mises and its mixture distribution. In particular we suggested EM algorithm to find ML estimates of the mixture model. Simulation results showed the suggested methods are very accurate. Applications to two kinds of real data sets are also included.
이 연구는 과학교육에서 의사소통을 위해 글쓰기와 논의를 활용한 논의-기반 모델링 전략의 개발을 목적으로 하였다. 논의-기반 모델링 전략은 모델링의 목적인 의사소통을 위해 자신이 만든 모델을 논의와 글쓰기를 통해 과학적 언어를 사용하여 스스로 정리하거나 표현하고, 다른 사람의 의견을 듣고 교환하는 과정을 통해 모델을 평가하고 수정하는 일련의 과정을 의미한다. 이 전략은 과학교육에서 모델링에 어려움을 느끼는 학생과 교사를 지원하기 위한 것으로 다음 네 가지 요소의 발달에 초점을 맞추었다. 첫째 여러 문제 상황을 관찰하여 문제를 연관지어 인식하는 문제인식이다. 둘째는 과학적 설명을 위해 충분한 과학개념을 구조화하여 제시하는 과학개념 구조화이며, 셋째는 주장에 대해 적절한 표상을 증거로 제시하는 주장-증거 적절성이다. 마지막은 증거제시에서 다양한 표상의 사용과 이 표상들을 전환하고 통합하는 다중표상 지수이다. 이 네 가지 요소의 발달을 위해 세 가지 stage를 구성하였다. '인지 과정'은 다중표상에 대한 이해를 위한 것이고, '해석 과정'은 다중표상 활동을 통해 증거 제시의 중요성을 인식하는 것이며, '적용 과정'은 학생들이 논의-기반 모델링을 직접 접해보는 것이다. 이 적용 과정에서는 질문 또는 문제 만들기-실험 설계 및 수행하기-관찰 통한 조사하기-자료의 분석 및 해석하기-임시 모델 설계하기-논의하기-되돌아보기-모델 평가하기-모델 수정하기의 아홉 개의 단계로 이루어진다. 논의-기반 모델링 전략은 학생들이 자신이 설계한 임시모델을 다른 사람과 공유하기 위해 증거를 바탕으로 발표하고 반박하는 논의과정을 통해 증거 제시의 필요성을 인식할 수 있다. 논의과정 후 학생들은 주장과 증거를 다중표상으로 나타내는 것에 대해 되돌아보는 과정을 거치면서 주장-증거 적절성을 높이게 된다. 또한 모델을 평가하기 위한 기준을 만들고, 이를 바탕으로 자신의 모둠이나 다른 모둠의 모델을 평가하고 그 결과를 피드백 받으면서 수정하게 된다. 이러한 일련의 과정을 거치면서 관찰한 자연세계의 현상에 대한 자신의 설명체계를 만듦으로써 과학적 지식을 형성할 수 있는 기회를 제공받을 수 있다.
이 연구의 목적은 논의가 강조된 일반화학실험이 학생들의 글쓰기에서 나타난 다중 표상 및 다중 표상의 내재성에 미치는 영향을 알아보기 위한 것이다. 이를 위해 탐구적 과학 글쓰기 전략을 바탕으로 일반화학실험 프로그램을 개발하였고, 이 프로그램을 적용한 후, 학생들의 글쓰기에서 나타나는 다중 표상의 양식과 내재성을 비교하였다. 이 연구는 일반화학실험을 수강하는 학생들을 대상으로 화학교육과 1학년 23명을 실험집단으로, 물리교육과 1학년 16명을 비교집단으로 선정하여 총 5개의 주제를 적용하였다. 학생들이 작성한 Summary Writing에서 나타난 다중 표상의 양식과 내재성을 공변량 분석으로 비교한 결과, 양식과 내재성 모두에서 실험집단의 평균이 비교집단에 비해 통계적으로 유의미하게 높은 것으로 나타났다. 이러한 결과로부터 논의가 강조된 일반화학실험은 다중 표상 및 다중 표상의 내재성의 발달에 있어서 전통적인 실험방식에 비해 더 효과적임을 알 수 있었다. 또한 논의와 글쓰기를 지속적으로 수행하는 과정이 학생들의 과학적 개념에 대한 이해에 도움이 될 것이라 보이며, 연구 결과가 대학생을 대상으로도 효과가 있다는 것에서 프로그램의 적용 범위의 확대 측면에서 의미가 있다고 본다.
Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.
본 논문에서는 기울기 센서와 고도계 센서로 구성된 다중모드 센서를 통하여 일정 공간내의 거주자의 자세 및 행동 패턴을 수집, 분석하여 거주자의 위치를 추론함으로써, 현재 거주자가 위치한 공간을 인지하는 시스템을 제안한다. 여기에서 제안된 센서 시스템의 하드웨어 구성과 소프트웨어 알고리즘에 대하여 설명하고, 다중모드 센서를 통하여 획득한 데이터로부터 거주자의 자세 및 행동을 분석한 후에 거주자가 존재하는 공간을 추론하는 프로세스에 대하여 설명한다. 마지막으로 거주자의 자세 및 행동 분석과 공간인지 기능을 검증하기 위하여 실제 환경 실험을 통하여 본 논문에서 제안한 시스템의 효용성과 타당성을 검토한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.